版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西梧州市岑溪市高一上数学期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若幂函数f(x)=xa图象过点(3,9),设,,t=-loga3,则m,n,t的大小关系是()A. B.C. D.2.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位3.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.4.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流5.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.6.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.7.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.8.函数f(x)=logA.(-∞,1) B.(2,+∞)C.(-∞,32) D.(39.已知点在函数的图象上,则下列各点也在该函数图象上的是()A. B.C. D.10.若、是全集真子集,则下列四个命题①;②;③;④中与命题等价的有A.1个 B.2个C.3个 D.4个二、填空题:本大题共6小题,每小题5分,共30分。11.圆关于直线的对称圆的标准方程为___________.12.已知=-5,那么tanα=________.13.已知定义域为的奇函数,则的解集为__________.14.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.15.已知函数,,则它的单调递增区间为______16.的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若两个函数和对任意,都有,则称函数和在上是疏远的(1)已知命题“函数和在上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;(2)若函数和在上是疏远的,求整数a的取值范围18.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:,19.已知函数且(1)判断函数的奇偶性;(2)判断函数在上的单调性,并给出证明;(3)当时,函数值域是,求实数与自然数的值20.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.21.如图,在四棱锥中,,,,分别为棱,的中点,,,且.(1)证明:平面平面.(2)若四棱锥的高为3,求该四棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由幂函数的图象过点(3,9)求出a的值,再比较m、n、t的大小【详解】幂函数f(x)=xa图象过点(3,9),∴3a=9,a=2;,∴m>n>t故选D【点睛】本题考查了幂函数的图象与性质的应用问题,是基础题2、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)3、B【解析】求圆心角的弧度数,再由弧长公式求弧长.【详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.4、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.5、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.6、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案7、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得8、A【解析】根据复合函数的单调性求解即可.【详解】因为y=log13x为减函数,且定义域为0,+∞.所以x故求y=x2-3x+2的单调递减区间即可.又对称轴为x=32,y=x2-3x+2在故选:A【点睛】本题主要考查了复合函数的单调区间,需要注意对数函数的定义域,属于基础题型.9、D【解析】由题意可得,再依次验证四个选项的正误即可求解.【详解】因为点在函数的图象上,所以,,故选项A不正确;,故选项B不正确;,故选项C不正确;,故选项D正确.故选:D10、B【解析】直接根据集合的交集、并集、补集的定义判断集合间的关系,从而求出结论【详解】解:由得Venn图,①;②;③;④;故和命题等价的有①③,故选:B【点睛】本题主要考查集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题12、-【解析】由已知得=-5,化简即得解.【详解】易知cosα≠0,由=-5,得=-5,解得tanα=-.故答案为:-【点睛】本题主要考查同角的商数关系,意在考查学生对这些知识的理解掌握水平.13、【解析】根据奇函数的性质及定义域的对称性,求得参数a,b的值,求得函数解析式,并判断单调性.等价于,根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.【详解】由题知,,则恒成立,即,,又定义域应关于原点对称,则,解得,因此,,易知函数单增,故等价于即,解得故答案为:14、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。15、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为16、【解析】根据两角和的正弦公式即可求出【详解】原式故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)该命题为假命题,反例为:当时,.(2).【解析】(1)利用“疏远函数”的定义直接判断即可,以或举例即可;(2)由函数的定义域可确定实数,构造函数,可证当时,恒成立,即函数和在上是疏远的【小问1详解】该命题为假命题,反例为:当时,.【小问2详解】由函数的定义域可知,故记∵在上单调递增,在上单调递减,∴在上单调递增,∴当时,,不满足;当时,,不满足;当时,,∴当时,故.18、(Ⅰ),;(Ⅱ)5年.【解析】Ⅰ由及联立解方程组可得;Ⅱ解不等式,利用对数知识可得【详解】Ⅰ,,
,又,即,,联立解得,,Ⅱ由Ⅰ得,由得,,故栽种5年后,该树木的高度将不低于栽种时的5倍【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题19、(1)奇函数,证明见解析;(2)答案见解析,证明见解析;(3),.【解析】(1)利用奇偶性定义判断奇偶性.(2)利用单调性定义,结合作差法、分类讨论思想求的单调性.(3)由题设得且,结合(2)有在上递减,结合函数的区间值域,求参数a、n即可.【小问1详解】由题设有,可得函数定义域为,,所以为奇函数.【小问2详解】令,则,又,则,当时,,即,则在上递增.当时,,即,则在上递减.【小问3详解】由,则,即,结合(2)知:在上递减且值域为,要使在值域是,则且,即,所以,又,故.综上,,【点睛】关键点点睛:第三问,注意,即有在上递减,再根据区间值域求参数.20、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解析】根据直线经过点A,再根据斜率等于直线3x+8y-1=0斜率2倍求出斜率的值,然后根据直线方程的点斜式写出直线的方程,化为一般式;直线经过点M(0,4),说明直线在y轴的截距为4,可设直线在x轴的截距为a,利用三角形周长为12列方程求出a,利用直线方程的截距式写出直线的方程,然后化为一般方程.试题解析:(1)因为3x+8y-1=0可化为y=-x+,所以直线3x+8y-1=0的斜率为-,则所求直线的斜率k=2×(-)=-又直线经过点(-1,-3),因此所求直线的方程为y+3=-(x+1),即3x+4y+15=0.(2)设直线与x轴的交点为(a,0),因为点M(0,4)在y轴上,所以由题意有4++|a|=12,解得a=±3,所以所求直线的方程为或,即4x+3y-12=0或4x-3y+12=0.【点睛】当直线经过点A,并给出斜率的条件时,根据斜率与已知直线的斜率关系求出斜率值,然后根据直线方程的点斜式写出直线的方程,化为一般式;当涉及到直线与梁坐标轴所围成的三角形的周长和面积时,一般利用直线方程的截距式解决问题较方便一些,但使用点斜式也好,截距式也好,它们都有不足之处,点斜式只能表达斜率存在的直线,截距式只能表达截距存在而且不为零的直线,因此使用时要注意补充答案.21、(1)见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房产项目开发用地租赁合同
- 2024年度二手书籍买卖合同
- 2024年度教育培训合同标的培训内容、时间与效果评估协议
- 二零二四年度边坡防护工程进度协调合同
- 2024年度融资租赁合同:租赁公司与众筹平台就设备融资租赁达成的一致意见
- 二零二四年度农业产业带喷灌基础设施共建合同
- 二零二四年度LED显示屏广告发布合同
- 二零二四年度软件许可使用合同(标的:某企业软件系统的许可使用)3篇
- 2024年度电力施工环境污染治理合同
- 2024年度智能城市公共安全监控系统合同
- 高等代数参考答案
- ppt经典模板-创业成功案例:美团
- 车间生产计划完成情况统计表
- 妇科病史及体查
- 教师评课意见和建议
- 肿瘤的预防-课件
- 2023年初级游泳救生员理论知识考试题库(浓缩400题)
- 施工现场临时用电安全技术规范
- 初中英语-The Shirt of a Happy Man教学课件设计
- 小数四则混合运算练习【说课稿】苏教版数学五年级上册
- 部编版道德与法治四年级上册第11课《变废为宝有妙招》优质课件
评论
0/150
提交评论