版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2任意角的三角函数任意角的三角函数(一)
必备知识·自主学习1.三角函数的定义(单位圆法)在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:sinα=__;cosα=__;tanα=____(x≠0).yx2.三角函数值的符号如图所示:正弦:一二象限___,三四象限___;余弦:一四象限___,二三象限___;正切:一三象限___,二四象限___.正负正负正负【思考】三角函数值在各象限的符号由什么决定?提示:三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.3.诱导公式一sin(α+k·2π)=______,cos(α+k·2π)=______,tan(α+k·2π)=______(k∈Z).
sinαcosαtanα【思考】根据三角函数的诱导公式一,终边相同的角的同一三角函数值有何关系?提示:终边相同的角,其同名三角函数的值相等.因为这些角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值相等.【基础小测】1.辨析记忆(对的打“√”,错的打“×”)(1)若sinα=sinβ,则α=β. (
)(2)设角α终边上的点P(x,y),r=|OP|≠0,则sinα=,且y越大,sinα的值越大. (
)(3)终边相同的角的三角函数值相等. (
)(4)终边落在y轴上的角的正切函数值为0. (
)提示:(1)×.由诱导公式sin(α+k·2π)=sinα可知,当β=α+2kπ时,sinα=sinβ,其中k∈Z.(2)×.由任意角的正弦函数的定义知,sinα=.但y变化时,sinα是定值.(3)√.三角函数值由其角的终边所在位置决定.(4)×.终边落在y轴上的角的正切函数值不存在.2.cos420°的值是 (
)
【解析】选A.cos420°=cos(360°+60°)=cos60°=.3.(教材二次开发:习题改编)已知角α的终边经过点P(4,-3),则2sinα+cosα的值等于 (
)
【解析】选A.因为角α的终边过点P,r=OP=5,所以利用三角函数的定义,求得sinα=-,cosα=,所以2sinα+cosα=-×2+关键能力·合作学习类型一三角函数的定义及应用(数学抽象、数学运算)【题组训练】1.设a<0,角α的终边与单位圆的交点为P(-3a,4a),那么sinα+2cosα的值等于 (
)
2.已知角α的终边落在直线x+y=0上,求sinα,cosα,tanα的值.【解析】1.选A.因为点P在单位圆上,则|OP|=1.即=1,解得a=±
因为a<0,所以a=-所以P点的坐标为所以sinα=cosα=所以sinα+2cosα=2.直线x+y=0,即y=-x,经过第二、四象限,在第二象限取直线上的点(-1,),则r==2,所以sinα=cosα=-,tanα=-;在第四象限取直线上的点(1,-),则r==2,所以sinα=cosα=tanα=-【解题策略】角α的终边在直线上求α的三角函数值的方法方法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.方法二:在α的终边上任选一点P(a,b),求出P到原点的距离为r(r>0).再根据公式sinα=cosα=tanα=求值即可.【补偿训练】1.角a的终边经过点P且cosa=-,则b的值为 (
)A.-3
B.3
C.±3
D.5【解析】选B.因为角a的终边经过点P且cosa=-,所以cosa=-则b>0,解得b=3.2.已知P(-2,y)是角α终边上一点,且sinα=-,求cosα与tanα的值.【解析】因为点P到原点的距离为r=,所以sinα=,所以y2+4=5y2,所以y2=1.又易知y<0,所以y=-1,所以r=,所以cosα=tanα=类型二三角函数值符号的应用(逻辑推理、数学运算)【典例】若sinα·cosα<0,则角α的终边位于第________象限.
【思路导引】由sinα·cosα<0可得由三角函数在各个象限的符号可求角α的终边所在象限.【解析】由sinα·cosα<0可得当时角α的终边位于第四象限,当时角α的终边位于第二象限.答案:二或四【解题策略】判断三角函数值在各象限符号的攻略(1)基础:准确确定三角函数值中各角所在象限.(2)关键:准确记忆三角函数在各象限的符号.(3)注意:用弧度制给出的角常常不写单位,不要将弧度误认成角度.提醒:注意巧用口诀记忆三角函数值在各象限内的符号.【跟踪训练】判断下列各式的符号:(1)sin145°cos(-210°);(2)sin3·cos4·tan5.【解析】(1)因为145°是第二象限角,所以sin145°>0,因为-210°=-360°+150°,所以-210°是第二象限角,所以cos(-210°)<0,所以sin145°cos(-210°)<0.(2)因为<3<π,π<4<,<5<2π,所以sin3>0,cos4<0,tan5<0,所以sin3·cos4·tan5>0.类型三诱导公式一的应用(逻辑推理、数学运算)【典例】计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°.
【思路导引】先用诱导公式一化简,再根据特殊角的三角函数求值.【解析】(1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°
(2)原式=【解题策略】利用诱导公式进行化简求值的步骤(1)定形:把已知的任意角写成2kπ+α,α∈(0,2π)的形式.(2)转化:根据诱导公式,转化为求角α的某个三角函数值.(3)求值:若角为特殊角直接求出该角的三角函数值.【跟踪训练】1.点A(sin1918°,cos1918°)在平面直角坐标系上位于 (
)A.第一象限 B.第二象限C.第三象限 D.第四象限【解析】选D.因为1918°=360°×5+118°,因为118°是第二象限角,所以1918°是第二象限角,则sin1918°>0,cos1918°<0,所以点A(sin1918°,cos1918°)在平面直角坐标系上位于第四象限.2.的值为________.
【解析】答案:01.已知角α终边过点P(1,-1),则tanα的值为 (
)
【解析】选B.由三角函数定义知tanα==-1.课堂检测·素养达标2.已知角α的终边过点P,且cosα=-,则m的值为(
)
【解析】选B.因为角α的终边过点P(-8m,-6sin30°),所以r3.(教材二次开发:例题改编)已知点P(cosα,tanα)在第三象限,则角α的终边在 (
)A.第一象限 B.第二象限C.第三象限 D.第四象限【解析】选B.由题意可得所以角α的终边在第二象限.4.sin(-315°)的值是 (
)
【解析】选C.sin(-315°)=sin(-360°+45°)=sin45°=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同标的为仓库一年使用权
- 2024年度技术开发合同标的技术研发内容及开发周期
- 2024年度秦皇岛市公共资源交易合同3篇
- 2024年度光伏发电项目合作合同:某新能源公司与某地方政府就光伏发电项目的合作协议3篇
- 2024年度物业管理有限公司门卫劳务合同范本
- 监控设备采购、安装及售后服务合同范本
- 2024年度场地租赁合同的变更协议
- 2024年度电商平台运营与代理合同
- 2024年度环保工程代理招商合同协议书
- 2024年度模具行业知识产权保护合同
- 人教版八年级(初二)数学上册全册课件PPT
- Q∕GDW 10202-2021 国家电网有限公司应急指挥中心建设规范
- CNAS-CL01:2018(ISO17025:2017)改版后实验室首次内审及管理评审资料汇总
- 护理不良事件-PPT课件
- 必看励志电影介绍当幸福来敲门(影评)通用PPT课件
- 商业银行两地三中心数据容灾备份方案建议书
- 审核评估报告(课堂PPT)
- 体育运动中的二次函数
- 部编版五年级语文上册习作《______即景》PPT课件
- 烹饪烹饪营养与卫生教案
- 美国标准黄卡
评论
0/150
提交评论