2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】_第1页
2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】_第2页
2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】_第3页
2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】_第4页
2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)数据0,1,2,3,x的平均数是2,则这组数据的方差是()A.2 B. C.10 D.2、(4分)对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.563、(4分)“的3倍与3的差不大于8”,列出不等式是()A. B.C. D.4、(4分)下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A. B. C. D.5、(4分)一组数据5,2,3,5,4,5的众数是()A.3 B.4 C.5 D.86、(4分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y27、(4分)某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()植树量(棵)34567人数410861A.参加本次植树活动共有29人 B.每人植树量的众数是4C.每人植树量的中位数是5 D.每人植树量的平均数是58、(4分)二次根式中字母的范围为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.10、(4分)分解因式:m2-9m=______.11、(4分)如图矩形ABCD中,AD=2,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.12、(4分)如图,△ABC中,E为BC的中点,AD平分∠BAC,BD⊥AD,若AB=10,AC=16,则DE=___________.13、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.三、解答题(本大题共5个小题,共48分)14、(12分)已知直线经过点M(-2,1),求此直线与x轴,y轴的交点坐标.15、(8分)如图,四边形ABCD是平行四边形,EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.16、(8分)把直线向上平移m个单位后,与直线的交点为点P.(1)求点P坐标用含m的代数式表示(2)若点P在第一象限,求m的取值范围.17、(10分)昆明市某校学生会干部对校学生会倡导的“牵手滇西”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:1.组别捐款额x/元人数A1≤x<10aB10≤x<20100C20≤x<30D30≤x<40E40≤x<10请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)根据统计情况,估计该校参加捐款的4100名学生有多少人捐款在20至40元之间.18、(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽取了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中______,并补全条形图;(2)样本数据的平均数是______,众数是______,中位数是______;(3)该区体育中考选报引体向上的男生共有1200人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____20、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).21、(4分)若已知方程组的解是,则直线y=-kx+b与直线y=x-a的交点坐标是________。22、(4分)用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____23、(4分)已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)25、(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.26、(12分)某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】试题分析:先根据平均数公式求得x的值,再根据方差的计算公式求解即可.解:由题意得,解得所以这组数据的方差故选A.考点:平均数,方差点评:本题属于基础应用题,只需学生熟练掌握方差的计算公式,即可完成.2、C【解析】

解:根据定义,得∴解得:.故选C.3、A【解析】

直接利用已知得出3x-3小于等于1即可.【详解】根据题意可得:3x-3≤1.故选A.此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.4、C【解析】

根据中心对称图形的定义和图案特点即可解答.【详解】解:A、不是中心对称图形,故本选项错误;

B、不是中心对称图形,故本选项错误;

C、是中心对称图形,故本选项正确;

D、不是中心对称图形,故本选项错误.

故选:C.本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5、C【解析】

根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】因为5出现3次,最多,所以,众数为3,选C。此题考查众数,解题关键在于掌握其定义6、C【解析】试题分析:∵k=1>0,∴y随x的增大而增大,∵-<1,∴y1<y1.故选C.考点:一次函数的性质.7、D【解析】分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.故选D.点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.8、B【解析】

根据二次根式有意义的条件可得a−4≥0,解不等式即可.【详解】解:由题意得:a−4≥0,解得:a≥4,故选:B.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.二、填空题(本大题共5个小题,每小题4分,共20分)9、51.【解析】

由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.【详解】解:当0≤x≤2时,设y与x的函数关系式为y=kx,2k=10,得k=5,∴当0≤x≤2时,y与x的函数关系式为y=5x,当x=1时,y=5×1=5,当x>2时,设y与x的函数关系式为y=ax+b,,得,即当x>2时,y与x的函数关系式为y=4x+2,当x=4时,y=4×4+2=1,故答案为:5,1.一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.10、m(m-9)【解析】

直接提取公因式m即可.【详解】原式=m(m-9).故答案为:m(m-9).此题主要考查了提公因式法分解因式,关键是正确找出公因式.11、6【解析】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF-∠BAF=30°,在Rt△ABC中,AC=2BC=2AD=22,由勾股定理,AB=AB【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.12、1【解析】

延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=10,BD=DH,根据三角形中位线定理计算即可.【详解】延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH(ASA)∴AH=AB=10,BD=DH,∴HC=AC-AH=6,∵BD=DH,BE=EC,∴DE=HC=1,故答案为:1.本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13、【解析】

根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【详解】∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB==5,故菱形的周长为1,故答案为:1.本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.三、解答题(本大题共5个小题,共48分)14、(0,-3)【解析】

将点M(-2,1)代入直线y=kx-3,求出k的值,然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点.【详解】∵y=kx-3过(-2,1),∴1=-2k-3,∴k=-2,∴y=-2x-3,∵令y=0时,x=,∴直线与x轴交点为(,0),∵令x=0时,y=-3,∴直线与y轴交点为(0,-3).本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟知函数与y轴的交点的横坐标为0,函数与x轴的交点的纵坐标为0是关键.15、118°【解析】

根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.【详解】解:∵EB⊥BC,ED⊥CD.∴∠EBC=∠EDC=90°∵∠E=62°∴∠C=360°-∠EBC-∠EDC-∠E=118°∵四边形ABCD为平行四边形∴∠A=∠C=118°本题考查了平行四边形的性质及多边形的内角和等知识,熟练掌握四边形的内角和为360°与平行四边形对角相等是解题的关键.16、(1);(2)m>1.【解析】

根据“上加下减”的平移规律求出直线向上平移m个单位后的解析式,再与直线联立,得到方程组,求出方程组的解即可得到交点P的坐标;根据第一象限内点的坐标特征列出不等式组,求解即可得出m的取值范围.【详解】解:直线向上平移m个单位后可得:,联立两直线解析式得:,解得:,即交点P的坐标为;点P在第一象限,,解得:.考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横坐标大于1、纵坐标大于1.17、(1)20,100;(2)见解析;(3)3060人【解析】

(1)根据题意:本次调查样本的容量是:(2)根据样本容量及扇形统计图先求C组人数,再画图;(3)该校名学生中大约在至元之间:【详解】解:(1),本次调查样本的容量是:,故答案为,;(2),组的人数为,补全“捐款人数分组统计图”如右图所示;(3)(人),答:该校名学生中大约有人捐款在至元之间.考核知识点:用样本估计总体.从统计图表获取信息是关键.18、(1)25%,图形见解析;(2)5.3,5,5;(3)540名【解析】

(1)用1减去其他人数所占的百分比即可得到a的值,再计算出样本总数,用样本总数×a的值即可得出“引体向上达6个”的人数;(2)根据平均数、众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1200即可.【详解】(1)由题意可得,,样本总数为:,做6个的学生数是,条形统计图补充如下:(2)由补全的条形图可知,样本数据的平均数,∵引体向上5个的学生有60人,人数最多,∴众数是5,∵共200名同学,排序后第100名与第101名同学的成绩都是5个,∴中位数为;(3)该区体育中考中选报引体向上的男生能获得满分的有:(名),即该区体育中考中选报引体向上的男生能获得满分的有540名.本题主要考查了众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数,掌握众数,用样本估计总体,扇形统计图,条形统计图,中位数,平均数是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.【详解】当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=kx得:k=5∴y=5x当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=1,即:a=1,故答案为:1.考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.20、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.21、(-1,3)【解析】

利用一次函数与二元一次方程组的关系,可知两一次函数的交点坐标就是两函数解析式所组成的方程组的解,可得结果.【详解】解:∵方程组的解是,∴直线y=kx−b与直线y=−x+a的交点坐标为(−1,3),∴直线y=-kx+b与直线y=x-a的交点坐标为(-1,3).故答案为:(-1,3)本题考查了一次函数与二元一次方程(组):两一次函数的交点坐标是两函数解析式所组成的方程组的解.22、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.23、±5【解析】

由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.【详解】解:设点A(x,0)∴AC2=OA2+OC2,∴26=25+OA2,∴OA=1∴点A(1,0),或(-1,0)当点A(1,0)时,如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°∴△ABF≌△BCE(AAS)∴BE=AF,BF=CE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论