重难点08全等三角形中“截长补短”模型(原卷版+解析)_第1页
重难点08全等三角形中“截长补短”模型(原卷版+解析)_第2页
重难点08全等三角形中“截长补短”模型(原卷版+解析)_第3页
重难点08全等三角形中“截长补短”模型(原卷版+解析)_第4页
重难点08全等三角形中“截长补短”模型(原卷版+解析)_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点08全等三角形中“截长补短”模型【知识梳理】截长:即在一条较长的线段上截取一段较短的线段在线段上截取补短:即在较短的线段上补一段线段使其和较长的线段相等延长,使得截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有:截长法:⑴过某一点作长边的垂线;⑵在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。补短法:⑴延长短边。⑵通过旋转等方式使两短边拼合到一起,证与长边相等。【考点剖析】例1如图,在中,,于D,求证:.例2.如图,在中,,的平分线交于点.求证:.【变式1】如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD【变式2】如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.【变式3】如图所示,AB∥CD,BE,CE分别是∠ABC,∠BCD的平分线,点E在AD上,求证:BC=AB+CD.【变式4】如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CE=AC.【变式5】如图,是等边三角形,是顶角的等腰三角形,以D为顶点作一个角,角的两边分别交AB于M,交AC于N,连接MN,求证:.【变式6】已知四边形ABCD是正方形,E、F分别在CB、CD的延长线上,.

求证:.例4.已知:在中,,,求证:.【变式1】如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=180°,求证:AD平分∠CDE.【变式2】已知四边形ABCD中,∠ABC+∠ADC=180°,AB=BC如图2,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,求证:∠PBQ=90°-12∠ADC例5.正三角形ABC中,E在AB上,F在AC上EDF=60°,DB=DC,BDC=120°,请问现在EF、BE、CF又有什么数量关系?【变式1】正方形ABCD中,点E在CD延长线上,点F在BC延长线上,EAF=45°,请问现在EF、DE、BF又有什么数量关系?【变式2】正方形ABCD中,点E在DC延长线上,点F在CB延长线上,EAF=45°,请问现在EF、DE、BF又有什么数量关系?【过关检测】一、解答题1.(2022秋·全国·八年级专题练习)如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.求证:BC=AB+CD.2.(2022秋·浙江·八年级专题练习)如图,已知:在中,,、是的角平分线,交于点O求证:.3.(2023·全国·八年级假期作业)如图,四边形中,,,,M、N分别为AB、AD上的动点,且.求证:.4.(2022秋·浙江·八年级专题练习)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.5.(2022秋·八年级课时练习)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.6.(2022秋·全国·八年级专题练习)如图,中,,分别平分和,,相交于点,.(1)求的度数;(2)判断,,之间的等量关系,并证明你的结论.7.(2023·浙江·八年级假期作业)如图①,和是等腰三角形,且,,,,以为顶点作一个角,角的两边分别交边,于点、,连接.(1)探究、、之间的关系,并说明理由;(2)若点、分别在、CA延长线上,其他条件不变,如图②所示,则、、之间存在什么样的关系?并说明理由.8.(2022秋·全国·八年级专题练习)在中,AE,CD为的角平分线,AE,CD交于点F.(1)如图1,若.①直接写出的大小;②求证:.(2)若图2,若,求证:.9.(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.10.(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E、F分别在正方形ABCD的边BC、CD上,,连接EF,则,试说明理由.证明:延长CD到G,使,在与中,∴理由:(SAS)进而证出:___________,理由:(__________)进而得.【变式探究】如图,四边形ABCD中,,点E、F分别在边BC、CD上,.若、都不是直角,则当与满足等量关系________________时,仍有.请证明你的猜想.【拓展延伸】如图,若,,,但,,连接EF,请直接写出EF、BE、DF之间的数量关系.11.(2023·江苏·八年级假期作业)如图,,、分别平分、,与交于点O.(1)求的度数;(2)说明的理由.12.(2022秋·浙江·八年级专题练习)如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.13.(2023秋·山西朔州·八年级校考期末)(1)问题背景:如图①:在四边形中,,,.E、F分别是、上的点且.探究图中线段、、之间的数量关系.小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是___________;(2)探索延伸:如图②,若在四边形中,,.分别是、上的点,且,上述结论是否仍然成立?说明理由;(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(处)北偏西的处,舰艇乙在指挥中心南偏东的处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以海里/小时的速度前进,舰艇乙沿北偏东的方向以海里/小时的速度前进小时后,甲、乙两舰艇分别到达处,此时在指挥中心观测到两舰艇之间的夹角为,试求此时两舰艇之间的距离.14.(2023春·全国·七年级专题练习)本学期,我们学习了三角形相关知识,而四边形的学习,我们一般通过辅助线把四边形转化为三角形,通过三角形的基本性质和全等来解决一些问题.(1)如图1,在四边形中,,,连接.①小明发现,此时平分.他通过观察、实验,提出以下想法:延长到点,使得,连接,证明,从而利用全等和等腰三角形的性质可以证明平分.请你参考小明的想法,写出完整的证明过程.②如图2,当时,请你判断线段,,之间的数量关系,并证明.(2)如图3,等腰、等腰的顶点分别为、,点在线段上,且,请你判断与的数量关系,并证明.15.(2022秋·全国·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.16.(2022秋·江苏·八年级专题练习)如图,△ABC中,AB=AC,∠EAF=∠BAC,BF⊥AE

于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.17.(2022秋·八年级课时练习)如图所示,平分平分;(1)求与的数量关系,并说明你的理由.(2)若把条件去掉,则(1)中与的数量关系还成立吗?并说明你的理由.18.(2022秋·江苏·八年级专题练习)已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度.(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP+∠QBC(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP+CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.

重难点08全等三角形中“截长补短”模型【知识梳理】截长:即在一条较长的线段上截取一段较短的线段在线段上截取补短:即在较短的线段上补一段线段使其和较长的线段相等延长,使得截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有:截长法:⑴过某一点作长边的垂线;⑵在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。补短法:⑴延长短边。⑵通过旋转等方式使两短边拼合到一起,证与长边相等。【考点剖析】例1如图,在中,,于D,求证:.∵,∴,∴,∴,,∴,∴,∴.解法二:(补短)延长CB到F,使,连接AF,∴,∵,∴,∴,∴,∵,∴.例2.如图,在中,,的平分线交于点.求证:.方法一:(截长)在上截取,连接.在和中,,∴∴,又∵∴,∴∴.方法二:(补短)延长到点使得,连接.在和中,,,∴,∴又∵∴∴,∴.方法三:(补短)延长到点使得,连接则有,又∵,∴∴∴,∴∴AB+BD=AC若题目条件或求证结论中含有“”的条件,需要添加辅助线时多考虑“截长补短”.建议教师此题把3种解法都讲一下,方便学生更加深刻理解这种辅助线添加方法.【变式1】如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD解析:在AB上取一点E,使AE=AC,连接DE,∵AE=AC,∠1=∠2,AD=AD∴△ACD≌△AED∴CD=DE,∠C=∠3∵∠C=2∠B∴∠3=2∠B=∠4+∠B∴∠4=∠B,∴DE=BE,CD=BE∵AB=AE+BE∴AB=AC+CD【变式2】如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.解析:如图,在EA上取点F,使EF=BE,连接CF,∵CE⊥AB∴CF=CB∠CFB=∠B∵∠AFC+∠CFB=180°,∠D+∠B=180°∴∠D=∠AFC∵AC平分∠BAD即∠DAC=∠FAC在△ACD和△ACF中∠D=∠AFC∠DAC=∠FACAC=AC∴ACD≌△ACF(AAS)∴AD=AF∴AE=AF+EF=AD+BE【变式3】如图所示,AB∥CD,BE,CE分别是∠ABC,∠BCD的平分线,点E在AD上,求证:BC=AB+CD.解析:在BC上取点F,使BF=AB∵BE,CE分别是∠ABC,∠BCD的平分线∴∠ABE=∠FBE,∠BCE=∠DCE∵AB∥CD∴∠A+∠D=180°在△ABE和△FBE中AB=FB∠ABE=∠FBEBE=BE∴△ABE≌△FBE(SAS)∴∠A=∠BFE∴∠BFE+∠D=180°∵∠BFE+∠EFC=180°∴∠EFC=∠D在△EFC和△EDC中,∠EFC=∠D∠BCE=∠DCECE=CE∴△EFC≌△EDC(AAS)∴CF=CD∵BC=BF+CF∴BC=AB+CD【变式4】如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CE=AC.解析:由题意可得∠AOC=120°∴∠AOE=∠DOC=180°-∠AOC=180°-120°=60°在AC上截取AF=AE,连接OF,如图在△AOE和△AOF中,AE=AF∠OAE=∠OAFOA=OA∴△AOE≌△AOF(SAS)∴∠AOE=∠AOF,∴∠AOF=60°∴∠COF=∠AOC-∠AOF=60°又∠COD=60°,∴∠COD=∠COF同理可得:△COD≌△COF(ASA)∴CD=CF又∵AF=AE∴AC=AF+CF=AE+CD即AE+CD=AC【变式5】如图,是等边三角形,是顶角的等腰三角形,以D为顶点作一个角,角的两边分别交AB于M,交AC于N,连接MN,求证:.延长AC到E点,使,连接DE,由题意可知,,,,,,,,,,,,,.【变式6】已知四边形ABCD是正方形,E、F分别在CB、CD的延长线上,.

求证:.延长FD到G,使,连接AG,∵四边形ABCD是正方形,∴,,∴,∴,,∴,∵,∴,∴,∴.例3.在中,的平分线交于,,,求的大小.在上截取,连接.∵,,,∴,∴,,∵,,∴∴,例4.已知:在中,,,求证:.方法一:在上取一点,使,如图1,在和中,,,.∴.∴,.又∵∴,∴∴.方法二:延长到点,使,如图2,∴.∵,∴.在和中,,,.∴.∴.∵∴.【变式1】如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=180°,求证:AD平分∠CDE.解析:延长CB至点F,使BF=DE,连接BF=DE,连接AF,AC∵∠1+∠2=180°,∠E+∠1=180°∴∠2=∠E∵AB=AE,∠2=∠E,BF=DE∴△ABF≌△AED∠F=∠4,AF=AD∵BC+BF=CD即FC=CD又∵AC=AC∴△ACF≌△ACD∴∠F=∠3∵∠F=∠4∴∠3=∠4∴AD平分∠CDE.【变式2】已知四边形ABCD中,∠ABC+∠ADC=180°,AB=BC如图2,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,求证:∠PBQ=90°-12∠ADC解析:如图2,延长DC,在上面找一点K,使得CK=AP,连接BK,∵∠ABC+∠ADC=180°∴∠BAD+∠BCD=180°∵∠BCD+∠BCK=180°∴∠BAD=∠BCK在△BAP和△BKC中AP=CK∠BAP=∠BCKAB=BC∴△BPA≌△BKC(SAS)∴∠ABP=∠CBK,BP=BK∵PQ=AP+CQ∴PQ=QK∵在△BPQ和△BKQ中BP=BKBQ=BQPQ=KQ∴△BPQ≌△BKQ(SSS)∴∠PBQ=∠KBQ∴∠PBQ=12∵∠ABC+∠ADC=180°∴∠ABC=180°-∠ADC∴12∠ABC=90°-1∴∠PBQ=90°-12例5.正三角形ABC中,E在AB上,F在AC上EDF=60°,DB=DC,BDC=120°,请问现在EF、BE、CF又有什么数量关系?数量关系为:EF=BE+FC,理由如下延长AC到点G,使得CG=BE,连接DG由△ABC是正三角形得:ABC=ACB=60°又∵DB=DC,BDC=120°,∴DBC=DCB=30°∴DBE=ABC+DBC=60°+30°=90°,ACD=ACB+DCB=60°+30°=90°∴GCD=180°ACD=90°∴DBE=DCG=90°又∵DB=DC,BE=CG,∴△DBE≌△DCG(SAS)∴EDB=GDC,DE=DG又∵DBC=120°=EDB+EDC=GDC+EDC=EDG∴GDF=EDGEDF=12060°=60°∴GDF=EDF=60°又∵DG=DE,DF=DF∴△GDF≌△EDF(SAS)∴EF=GF=CG+FC=BE+FC【变式1】正方形ABCD中,点E在CD延长线上,点F在BC延长线上,EAF=45°,请问现在EF、DE、BF又有什么数量关系?数量关系为:EF=BFDE.理由如下:在BC上截取BG,使得BG=DF,连接AG由四边形ABCD是正方形得ADE=ABG=90°,AD=AB又DE=BG∴△ADE≌△ABG(SAS)∴EAD=GAB,AE=AG由四边形ABCD是正方形得DAB=90°=DAG+GAB=DAG+EAD=GAE∴GAF=GAEEAF=90°45°=45°∴GAF=EAF=45°又∵AG=AE,AF=AF∴△EAF≌△GAF(SAS)∴EF=GF=BFBG=BFDE【变式2】正方形ABCD中,点E在DC延长线上,点F在CB延长线上,EAF=45°,请问现在EF、DE、BF又有什么数量关系?数量关系为:EF=DEBF.理由如下:在DC上截取DG,使得DG=BF,连接AG由四边形ABCD是正方形得ADG=ABF=90°,AD=AB又∵DG=BF∴△ADG≌△ABF(SAS)∴GAD=FAB,AG=AF由四边形ABCD是正方形得DAB=90°=DAG+GAB=BAF+GAB=GAF∴GAE=GAFEAF=90°45°=45°∴GAE=FAE=45°又∵AG=AF,AE=AE∴△EAG≌△EAF(SAS)∴EF=EG=EDGD=DEBF【过关检测】一、解答题1.(2022秋·全国·八年级专题练习)如图,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.求证:BC=AB+CD.【答案】证明见解析【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:,∴△ABD≌△EBD(SAS),∴∠DEB=∠BAD=108°,∴∠DEC=180°-108°=72°,又AB=AC,∴∠C=∠ABC=(180°-108°)÷2=36°,∴∠CDE=180°-∠C-∠DEC=180°-36°-72°=72°,∴∠DEC=∠CDE,∴CD=CE,∴BC=BE+CE=AB+CD.【点睛】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法.2.(2022秋·浙江·八年级专题练习)如图,已知:在中,,、是的角平分线,交于点O求证:.【答案】见解析【分析】在AC上取一点H,使AH=AE,根据角平分线的定义可得∠EAO=∠HAO,然后利用“边角边”证明△AEO和△AHO全等,根据全等三角形对应角相等可得∠AE0=∠AHO,根据角平分线的定义可得∠1=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3=60°,再根据角平分线的定义和三角形的内角和定理求出∠4=60°,从而得到∠3=∠4,然后利用“边角边”证明△CFO和△CHO全等,根据全等三角形对应边相等可得CF=CH,再根据AC=AH+CH代换即可得证.【详解】证明:如图,在上取一点H,使,连接.∵是的角平分线,∴,在和中,∵∴,∴,∵是的角平分线,∴,∵,∴,∵、是的角平分线,∴,∴,在和中,∴,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,三角形内角和定理,利用“截长补短”法作辅助线构造出全等三角形是解题的关键.3.(2023·全国·八年级假期作业)如图,四边形中,,,,M、N分别为AB、AD上的动点,且.求证:.【答案】见解析【分析】延长至点,使得,连接,根据同角的补角相等得,根据证明,则,进而证明,根据证明,得到,则.【详解】证明:延长至点,使得,连接,四边形中,,,,在和中,,,,,,,,,在和中,,,.【点睛】本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.4.(2022秋·浙江·八年级专题练习)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.【答案】证明见解析【分析】如图,在上截取证明再证明可得从而可得结论.【详解】证明:如图,在上截取平分平分【点睛】本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.5.(2022秋·八年级课时练习)如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)若AB=7.4,AF=1.4,求线段BE的长.【答案】(1)见解析;(2)3【分析】(1)证明△ACD≌△AED(AAS),即可得出结论;(2)在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得ME=BE,求出MB=AB-AM=6,即可求解.【详解】解:(1)证明:∵AD平分∠BAC,∴∠DAC=∠DAE,∵DE⊥BA,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD和△AED中,,∴△ACD≌△AED(AAS),∴AC=AE;(2)在AB上截取AM=AF,连接MD,在△FAD和△MAD中,,∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,,∴Rt△MDE≌Rt△BDE(HL),∴ME=BE,∵AF=AM,且AF=1.4,∴AM=1.4,∵AB=7.4,∴MB=AB-AM=7.4-1.4=6,∴BE=BM=3,即BE的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.6.(2022秋·全国·八年级专题练习)如图,中,,分别平分和,,相交于点,.(1)求的度数;(2)判断,,之间的等量关系,并证明你的结论.【答案】(1)∠BFD=60°;(2)BC=BD+CE;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC上截取BG=BD,连接FG,证明△BDF≌△BGF,△CGF≌△CEF,即可得到结果;【详解】(1)∵,分别平分和,,∴,,∵,∴,∴,∴.(2)BC=BD+CE;证明方法:在BC上截取BG=BD,连接FG,在△BDF和△BGF中,,∴,∴,又∵,∴△CGF≌△CEF(ASA),∴CE=CG,∴BC=BD+CE.【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.7.(2023·浙江·八年级假期作业)如图①,和是等腰三角形,且,,,,以为顶点作一个角,角的两边分别交边,于点、,连接.(1)探究、、之间的关系,并说明理由;(2)若点、分别在、CA延长线上,其他条件不变,如图②所示,则、、之间存在什么样的关系?并说明理由.【答案】(1)EF=BE+FC;(2)EF=FC-BE.【分析】(1)由等腰三角形的性质,解得,,延长AB至G,使得BG=CF,连接DG,进而证明,再根据全等三角形对应边相等的性质解得,再结合等腰三角形的性质可证明,最后根据全等三角形的性质解题即可;(2)在CA上截取CG=BE,连接DG,由等腰三角形的性质,可得,,进而证明得到,据此方法再证明,最后根据全等三角形的性质解题即可.【详解】(1)和是等腰三角形,延长AB至G,使得BG=CF,连接DG在和中,BG=CF,,在和中,DE=DE,,(2)在CA上截取CG=BE,连接DG是等腰三角形,在和中,CG=BE,在和中,FD=FD,【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2022秋·全国·八年级专题练习)在中,AE,CD为的角平分线,AE,CD交于点F.(1)如图1,若.①直接写出的大小;②求证:.(2)若图2,若,求证:.【答案】(1)①120°;②见解析;(2)见解析【分析】(1)①综合三角形的内角和定理以及角平分线的定义求解即可;②利用“截长补短”思想,在AC上取点H,使得AD=AH,从而通过全等证得∠AFD=∠AFH,再结合①的结论进一步证明∠CFH=∠CFE,从而通过全等证得CE=CH,即可得出结论;(2)同样利用“截长补短”思想,在AC上取S、T两点,使得AD=AS,CE=CT,连接SF,SE,TF,TE,可通过全等直接先对△ADF和△CEF的面积进行转换,然后结合(1)中的结论,证明SF∥ET,即可对△DEF的面积进行转换,从而得出结论.【详解】(1)①解:∵∠B=60°,∴∠BAC+∠BCA=180°-∠B=120°,∵AE平分∠BAC,CD平分∠BCA,∴∠FAC=∠BAC,∠FCA=∠BCA,∴∠FAC+∠FCA=(∠BAC+∠BCA)=×120°=60°,∴∠AFC=180°-(∠FAC+∠FCA)=120°;②证:如图所示,在AC上取点H,使得AD=AH,在△ADF和△AHF中,∴△ADF≌△AHF(SAS),∴∠AFD=∠AFH,∵∠AFD=∠CFE,∴∠AFH=∠CFE,由①可知,∠AFC=120°,∴∠CFE=180°-120°=60°,∴AFH=∠CFE=60°,∴∠CFH=60°,即:∠CFH=∠CFE,在△CFH和△CFE中,∴△CFH≌△CFE(ASA),∴CE=CH,∵AC=AH+CH,∴AC=AD+CE;(2)证:如图所示,在AC上取S、T两点,使得AD=AS,CE=CT,连接SF,SE,TF,TE,∵AE平分∠BAC,∴∠DAF=∠SAF,在△ADF和△ASF中,∴△ADF≌△ASF(SAS),同理可证△AED≌△AES,△CEF≌△CTF,∴DF=SF,DE=SE,FT=FE,∴△DEF≌△SEF,∴,,,且∠AFD=∠AFS,∠CFE=∠CFT,∵∠AFD=∠CFE,∴∠AFD=∠AFS=∠CFE=∠CFT,由(1)可得:∠AFC=90°+∠B=135°,∴∠CFE=180°-135°=45°,∴∠AFD=∠AFS=∠CFE=∠CFT=45°,∴∠CFS=135°-∠AFS=90°,∴CF⊥SF,又∵FT=FE,CT=CE,∴CF垂直平分EF,即:CF⊥ET,∴SF∥ET,∴,∴∵,∴.【点睛】本题考查全等三角形的判定与性质,以及三角形角平分线相关的证明问题,掌握基本的辅助线添加思想,熟练运用全等三角形的判定与性质是解题关键.9.(2023·全国·九年级专题练习)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.【答案】(1)EF=BE+FD;(2)(1)中的结论仍然成立,见解析;(3)结论不成立,EF=BE﹣FD,见解析【分析】(1)延长CB至G,使BG=DF,连接AG,证明△ABG≌△ADF,根据全等三角形的性质得到AG=AF,∠BAG=∠DAF,再证明△GAE≌△FAE,根据全等三角形的性质得出EF=EG,结合图形计算,证明结论;(2)延长CB至M,使BM=DF,连接AM,仿照(1)的证明方法解答;(3)在EB上截取BH=DF,连接AH,仿照(1)的证明方法解答.【详解】解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴EF=EG,∵EG=BG+BE=BE+DF,∴EF=BE+FD,故答案为:EF=BE+FD;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠3=∠2,∵∠EAF=∠BAD,∴∠2+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,在△MAE和△FAE中,,∴△MAE≌△FAE(SAS),∴EF=EM,∵EM=BM+BE=BE+DF,∴EF=BE+FD;(3)(1)中的结论不成立,EF=BE﹣FD,理由如下:如图3,在EB上截取BH=DF,连接AH,同(2)中证法可得,△ABH≌△ADF,∴AH=AF,∠BAH=∠DAF,∴∠HAE=∠FAE,在△HAE和△FAE中,,∴△HAE≌△FAE(SAS),∵EH=BE﹣BH=BE﹣DF,∴EF=BE﹣FD.【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.10.(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E、F分别在正方形ABCD的边BC、CD上,,连接EF,则,试说明理由.证明:延长CD到G,使,在与中,∴理由:(SAS)进而证出:___________,理由:(__________)进而得.【变式探究】如图,四边形ABCD中,,点E、F分别在边BC、CD上,.若、都不是直角,则当与满足等量关系________________时,仍有.请证明你的猜想.【拓展延伸】如图,若,,,但,,连接EF,请直接写出EF、BE、DF之间的数量关系.【答案】(1),理由:SAS;(2),证明见解析;(3)BE+DF=EF.【分析】(1)在前面已证的基础上,得出结论,进而证明,从而得出结论;(2)利用“解决问题”中的思路,同样去构造即可;(3)利用前面两步的思路,证明全等得出结论即可.【详解】(1),,则,,,在与中,,理由:();(2)满足即可,证明如下:如图,延长至,使,,,,在与中,,,则,,,在与中,,理由:();(3)BE+DF=EF.证明如下:如图,延长至,使,在与中,,,则,,,在与中,,理由:();.【点睛】本题考查了截长补短的方法构造全等三角形,能够理解前面介绍的方法并继续探究是解决问题的关键.11.(2023·江苏·八年级假期作业)如图,,、分别平分、,与交于点O.(1)求的度数;(2)说明的理由.【答案】(1)120°;(2)见解析【分析】(1)根据角平分线的定义可得∠OAB+∠OBA=60°,从而得到∠AOB;(2)在AB上截取AE=AC,证明△AOC≌△AOE,得到∠C=∠AEO,再证明∠C+∠D=180°,从而推出∠BEO=∠D,证明△OBE≌△OBD,可得BD=BE,即可证明AC+BD=AB.【详解】解:(1)∵AD,BC分别平分∠CAB和∠ABD,∠CAB+∠ABD=120°,∴∠OAB+∠OBA=60°,∴∠AOB=180°-60°=120°;(2)在AB上截取AE=AC,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=AB.【点睛】本题考查了角平分线的定义,三角形内角和,全等三角形的判定和性质,解题的关键是截取AE=AC,利用全等三角形的性质证明结论.12.(2022秋·浙江·八年级专题练习)如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】见解析【分析】法一:因为AB>AC,所以在AB上截取线段AE=AC,则BE=AB-AC,连接EM,在△BME中,显然有MB-ME<BE,再证明ME=MC,则结论成立.法二:延长AC至H,在AH上截取线段AB=AG,证明△ABM≌△AGM,得到BM=GM,根据三角形的三边关系即可求解.【详解】证明:法一:在AB上截取AE=AC,连接ME,在△MBE中,MB-ME<BE(三角形两边之差小于第三边),∵AD是∠BAC的平分线,∴,在△AMC和△AME中,∵∴△AMC≌△AME(SAS),∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.法二:延长AC至H,在AH上截取线段AB=AG,同理可证得△ABM≌△AGM(SAS),∴BM=GM,∵在△MCG中MG-MC<CG∴MB-MC<AG-AC=AB-AC即MB-MC<AB-AC.【点睛】本题考查全等三角形的判定和性质,三角形三边关系以及截长补短法,解题关键是作辅助线构造全等三角形.13.(2023秋·山西朔州·八年级校考期末)(1)问题背景:如图①:在四边形中,,,.E、F分别是、上的点且.探究图中线段、、之间的数量关系.小明同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,可得出结论,他的结论应是___________;(2)探索延伸:如图②,若在四边形中,,.分别是、上的点,且,上述结论是否仍然成立?说明理由;(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(处)北偏西的处,舰艇乙在指挥中心南偏东的处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以海里/小时的速度前进,舰艇乙沿北偏东的方向以海里/小时的速度前进小时后,甲、乙两舰艇分别到达处,此时在指挥中心观测到两舰艇之间的夹角为,试求此时两舰艇之间的距离.【答案】(1)问题背景:,理由见详解;(2)探索延伸:成立,理由见详解;(3)实际应用:两舰艇之间的距离为海里【分析】(1)问题背景:,,,可证,由,,为公共边,可证,由此即可求解;(2)探索延伸:根据“问题背景”的提示,延长到点,使,由此即可求解;(3)实际应用:如图所示(见详解),延长,使得,连接,证明,,可知,由此即可求解.【详解】解:(1)问题背景:根据题意,在,中,∵,∴,∴,,∵,,∴,即,∴在,中,∵,∴,∴,∴;(2)探索延伸:如图所示,延长到点,使,∵,,∴,在,中,,∴,∴,∵,∴,∴,∴,在,中,∵,∴,∴,∴,∴成立;(3)实际应用:如图所示,延长,使得,连接,∵舰艇甲在指挥中心(处)北偏西的处,舰艇乙在指挥中心南偏东的处,舰艇乙沿北偏东的方向行驶,∴,,,∴在,中,,∴,∴,,∵,∴,∴,即,在,中,,∴,∴,∵舰艇甲向正东方向以海里/小时的速度前进,舰艇乙沿北偏东的方向以海里/小时的速度前进小时,∴,,∴(海里),∴两舰艇之间的距离为海里.【点睛】本题主要考查三角形全等的判定和性质及实际应用,掌握作辅助线求证三角形全等,再根据三角形全等的性质是解题的关键.14.(2023春·全国·七年级专题练习)本学期,我们学习了三角形相关知识,而四边形的学习,我们一般通过辅助线把四边形转化为三角形,通过三角形的基本性质和全等来解决一些问题.(1)如图1,在四边形中,,,连接.①小明发现,此时平分.他通过观察、实验,提出以下想法:延长到点,使得,连接,证明,从而利用全等和等腰三角形的性质可以证明平分.请你参考小明的想法,写出完整的证明过程.②如图2,当时,请你判断线段,,之间的数量关系,并证明.(2)如图3,等腰、等腰的顶点分别为、,点在线段上,且,请你判断与的数量关系,并证明.【答案】(1)①见解析;②,证明见解析;(2),证明见解析【分析】(1)①参考小明的想法,延长到点,使得,连接,证明,从而利用全等和等腰三角形的性质可以证明平分;②沿用①中辅助线,延长到点,使得,连接,证得直角三角形,再利用勾股定理可求得,,之间的数量关系;(2)类比(1)中证明的思路,延长至,使得,连,证明、,再利用全等三角形的对应角相等和等腰三角形等边对等角的性质,找到与的数量关系.【详解】(1)如图,延长到点,使得,连接.,,在与中,,.平分(2)证明:如图,延长到点,使得,连接.由(1)知,,在直角三角形中,(3)证明:如图,延长至,使得,连,由(1)知,,在与中,,,,【点睛】本题考查三角形的基本知识、全等三角形的性质和判定以及等腰三角形的性质与判定.综合性较强.15.(2022秋·全国·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论