2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版+解析)_第1页
2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版+解析)_第2页
2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版+解析)_第3页
2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版+解析)_第4页
2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究(原卷版+解析)_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究典例分析例1(2022枣庄中考)(12分)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.专题过关1.(2022吉林中考)如图,在平面直角坐标系中,抛物线(,是常数)经过点,点.点在此抛物线上,其横坐标为.(1)求此抛物线的解析式;(2)当点在轴上方时,结合图象,直接写出的取值范围;(3)若此抛物线在点左侧部分(包括点)的最低点的纵坐标为.①求值;②以为边作等腰直角三角形,当点在此抛物线的对称轴上时,直接写出点的坐标.2.(2022陕师大附中三模)如图,在平面直角坐标系中,抛物线M的表达式为y=﹣x2+2x,与x轴交于O、A两点,顶点为点B.(1)求证:△OAB为等腰直角三角形:(2)已知点P在y轴上,且OP=1,点C在第一象限,△ABC为等腰直角三角形,将抛物线M进行平移,使其对称轴经过点C,请问平移后的抛物线能否经过点P?如果能,求出平移方式;如果不能,说明理由.3.(2022西安高新一中三模)已知抛物线L:y=x2﹣4x+2,其顶点为C.(1)求点C的坐标;(2)若M为抛物线L上一点,抛物线L关于点M所在直线x=m对称的抛物线为L',点C的对应点为C',在抛物线L上是否存在点M,使得△CMC′为等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.4.(2022山西一模)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于A,B,C三点,其中A点坐标为,B点坐标为,连接,.动点P从A点出发,在线段上以每秒个单位长度向点C做匀速运动;同时,动点Q从B点出发,在段上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为t秒.(1)________,________;(2)在P,Q运动的过程中,当t为何值时,四边形的面积最小,最小值为多少?(3)在线段上方的抛物线上是否存在点M,使是以点P为直角顶点的等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.5.(2022运城二模)如图,已知抛物线与x轴交于点,两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(),在点P运动的过程中,当等腰直角的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.6.(2022太原二模)综合与探究:如图,已知直线和抛物线相交于点和点,与x轴相交于点C.

(1)求抛物线的函数表达式和点C的坐标;(2)已知点D的坐标为,判断的形状,并说明理由;(3)试探究在抛物线上是否存在点P,使得为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.7.(2021怀化中考)(14分)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.8.(2021广安中考)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.(1)求、的值;(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.9.(2021张家界中考)如图,已知二次函数的图象经过点且与轴交于原点及点.

(1)求二次函数的表达式;(2)求顶点的坐标及直线的表达式;(3)判断的形状,试说明理由;(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.10.(2021上海中考)已知抛物线经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC,①当Q与A重合时,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.11.(2021衡阳中考)(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.12.(2021随州中考)(12分)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.13.(2021黄石中考)(12分)抛物线y=ax2﹣2bx+b(a≠0)与y轴相交于点C(0,﹣3),且抛物线的对称轴为x=3,D为对称轴与x轴的交点.(1)求抛物线的解析式;(2)在x轴上方且平行于x轴的直线与抛物线从左到右依次交于E、F两点,若△DEF是等腰直角三角形,求△DEF的面积;(3)若P(3,t)是对称轴上一定点,Q是抛物线上的动点,求PQ的最小值(用含t的代数式表示).2023学年二轮复习解答题专题三十五:抛物线上有关等腰直角三角形问题的探究典例分析例1(2022枣庄中考)(12分)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法可得抛物线的解析式;(2)过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得△OPE的面积,利用二次函数的最值可得其最大值;(3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE的交点坐标、与AE的交点坐标,用含h的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h的取值范围;(4)存在四种情况:作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.【解答】解:(1)∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE=S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点DM,交AE于点N,则E(2,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).【点评】本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想解决问题的关键.专题过关1.(2022吉林中考)如图,在平面直角坐标系中,抛物线(,是常数)经过点,点.点在此抛物线上,其横坐标为.(1)求此抛物线的解析式;(2)当点在轴上方时,结合图象,直接写出的取值范围;(3)若此抛物线在点左侧部分(包括点)的最低点的纵坐标为.①求值;②以为边作等腰直角三角形,当点在此抛物线的对称轴上时,直接写出点的坐标.【答案】(1)(2)或(3)①或3;②或或【解析】【分析】(1)根据点的坐标,利用待定系数法即可得;(2)先根据抛物线的解析式求出此抛物线与轴的另一个交点坐标为,再画出函数图象,由此即可得;(3)①先求出抛物线的对称轴和顶点坐标、以及点的坐标,再分和两种情况,分别画出函数图象,利用函数的增减性求解即可得;②设点的坐标为,分和两种情况,分别根据等腰直角三角形的定义建立方程组,解方程组即可得.【小问1详解】解:将点代入得:,解得,则此抛物线的解析式为.【小问2详解】解:对于二次函数,当时,,解得或,则此抛物线与轴的另一个交点坐标为,画出函数图象如下:则当点在轴上方时,的取值范围为或.【小问3详解】解:①二次函数对称轴为直线,顶点坐标为,当时,,即,(Ⅰ)如图,当时,当时,随的增大而减小,则此时点即为最低点,所以,解得或(不符题设,舍去);(Ⅱ)如图,当时,当时,随的增大而减小;当时,随的增大而增大,则此时抛物线的顶点即为最低点,所以,解得,符合题设,综上,的值为或3;②设点的坐标为,由题意,分以下两种情况:(Ⅰ)如图,当时,设对称轴直线与轴的交点为点,则在等腰中,只能是,垂直平分,且,(等腰三角形的三线合一),,解得,则此时点的坐标为或;(Ⅱ)当时,由(3)①可知,此时,则点,,,,当时,是等腰直角三角形,则,即,方程组无解,所以此时不存在符合条件的点;当时,是等腰直角三角形,则,即,解得,所以此时点的坐标为;当时,是等腰直角三角形,则,即,方程组无解,所以此时不存在符合条件的点;综上,点的坐标为或或.【点睛】本题考查了二次函数的几何应用、等腰直角三角形、一元二次方程的应用等知识点,熟练掌握二次函数的图象与性质是解题关键.2.(2022陕师大附中三模)如图,在平面直角坐标系中,抛物线M的表达式为y=﹣x2+2x,与x轴交于O、A两点,顶点为点B.(1)求证:△OAB为等腰直角三角形:(2)已知点P在y轴上,且OP=1,点C在第一象限,△ABC为等腰直角三角形,将抛物线M进行平移,使其对称轴经过点C,请问平移后的抛物线能否经过点P?如果能,求出平移方式;如果不能,说明理由.【答案】(1)见详解(2)将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线;抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【解析】【分析】(1)将抛物线M配方为顶点式得出抛物线的对称轴为x=2,抛物线的顶点B(2,2),然后求出点A(4,0),根据对称轴求出点E(2,O),BE⊥OA,证明△OEB为等腰直角三角形,再证△AEB为等腰直角三角形即可;(2)根据△ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90°,得出点C1(4,4)将抛物线M向右平移2个单位,再向上平移2个点,得出以C1为顶点的抛物线为,以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90°,得AC2,求出点C2(6,2),抛物线M向右平移4个单位得出过顶点C2的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)即可.【小问1详解】解:抛物线M的表达式为,∴抛物线的对称轴为x=2,抛物线的顶点B(2,2),抛物线与x轴的交点,解得:,∴点A(4,0),∵抛物线对称轴为x=2,∴点E(2,O),BE⊥OA,∵OE=BE=2,∠OEB=90°,∴△OEB为等腰直角三角形,∴∠BOE=∠OBE=45°,∵AE=OA-OE=4-2=2,∴BE=AE,∠AEB=90°,∴△AEB为等腰直角三角形,∴∠EBA=∠EAB=45°,∴∠BOE=∠OBE=∠EBA=∠EAB=45°,∴OB=AB,∠OBA=∠OBE+∠ABE=45°+45°=90°,∴△OAB为等腰直角三角形【小问2详解】解:∵△ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90°,∴∠BAC1=45°,∴∠CAO=∠OAB+∠C1AB=45°+45°=90°,∴CA⊥x轴,∵∠OBA+∠ABC1=90°+90°=180°,∴点O、B、C1三点共线,∵∠C1OA=45°,∴△OAC1为等腰直角三角形,∴C1A=OA=4,∴点C1(4,4)∵OP=1,∴点P(0,1)设过点P与C1形状与M斜体的抛物线解析式为,代入坐标得解得∴,将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90°,得AC2,∵∠C2BA=45°=∠BAO,∴BC2∥OA,∠OBA=∠C2AB,∴AC2∥OB,∴四边形OBC2A,∴BC2=OA=4,∴点C2横坐标为OE+BC2=2+4=6,∴点C2(6,2),∴点P(0,1)设过点P与C2形状与M斜体的抛物线解析式为,代入坐标得解得∴∴,∴抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)∵点P(0,1)设过点P与C3形状与M斜体的抛物线解析式为,代入坐标得解得∴∴,∴抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【点睛】本题考查图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移,掌握图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移是解题关键.3.(2022西安高新一中三模)已知抛物线L:y=x2﹣4x+2,其顶点为C.(1)求点C的坐标;(2)若M为抛物线L上一点,抛物线L关于点M所在直线x=m对称的抛物线为L',点C的对应点为C',在抛物线L上是否存在点M,使得△CMC′为等腰直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)(2)存在,或【解析】【分析】(1)化成顶点式即可求得;(2)设,根据点C的坐标为,抛物线L关于点M所在直线x=m对称的抛物线为L',可得点C的对应点C'的坐标为,可证得等腰三角形,再根据为等腰直角三角形,可得,解此方程即可求得.【小问1详解】解:,点C的坐标为;【小问2详解】解:存在;点M在抛物线L:上,设,点C的坐标为,抛物线L关于点M所在直线x=m对称的抛物线为L',点C的对应点C'的坐标为,点C、C'关于直线x=m对称,点M在直线x=m上,等腰三角形,要使为等腰直角三角形,则,即,当时,解得m=3或m=2(舍去),此时点M的坐标为;当时,解得m=1或m=2(舍去),此时点M的坐标为,综上所述,存在满足条件的点M,且当点M的坐标为或时,等腰直角三角形.【点睛】本题考查了二次函数的图象与性质,等腰直角三角形的判定与性质,坐标与图形,轴对称图形的性质,采用数形结合的思想是解决此类题的关键.4.(2022山西一模)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于A,B,C三点,其中A点坐标为,B点坐标为,连接,.动点P从A点出发,在线段上以每秒个单位长度向点C做匀速运动;同时,动点Q从B点出发,在段上以每秒1个单位长度向点A做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为t秒.(1)________,________;(2)在P,Q运动的过程中,当t为何值时,四边形的面积最小,最小值为多少?(3)在线段上方的抛物线上是否存在点M,使是以点P为直角顶点的等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)当t=2时,四边形BCPQ的面积最小,即为4;(3)【解析】【分析】(1)利用待定系数法求解即可;(2)过点P作PE⊥x轴,垂足为E,利用表示出四边形BCPQ的面积,求出t的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,证明△PFM≌△QEP,得到MF=PE=t,PF=QE=4-2t,得到点M的坐标,再代入二次函数表达式,求出t值,即可算出M的坐标.【详解】解:∵抛物线的图象与坐标轴相交于A,B,C三点,其中A点坐标为,B点坐标为,∴,解得:;(2)由(1)得:抛物线的解析式为,当时,,∴点C(0,3),∴OC=3,∵A点坐标为,∴OA=3,∴OA=OC,∴△AOC为等腰直角三角形,∴∠OAC=∠OCA=45°,由题意得:,BQ=t,则OQ=1-t,∴点Q(-1+t,0),如图,过点P作PE⊥x轴于点E,∴∠APE=45°,∴∠APE=∠OAC,∴PE=AE,∵PE2+AE2=AP2,∴,∴OE=OA-AE=3-t,∴点E(3-t,0),∴,∵当其中一点到达终点时,另一点随之停止运动,,∴0≤t≤3,∴当t=2时,四边形BCPQ的面积最小,即为4;(3)存在,理由如下:假设点M是线段AC上方的抛物线上的点,如图,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,连接MQ,MP,∵△PMQ是等腰直角三角形,PM=PQ,∠MPQ=90°,∴∠MPF+∠QPE=90°,又∠MPF+∠PMF=90°,∴∠PMF=∠QPE,在△PFM和△QEP中,∵∠F=∠QEP,∠PMF=∠QPE,PM=PQ,∴△PFM≌△QEP(AAS),∴MF=PE=t,PF=QE=4-2t,∴EF=4-2t+t=4-t,又OE=3-t,∴点M的坐标为(3-2t,4-t),∵点M在抛物线y=-x2+2x+3上,∴4-t=-(3-2t)2+2(3-2t)+3,解得:或(舍去),∴,即点M的坐标为,∴在线段上方的抛物线上存在点,使是以点P为直角顶点的等腰直角三角形.【点睛】本题考查了二次函数综合,涉及到全等三角形的判定和性质,等腰直角三角形的性质,三角形面积,用方程的思想解决问题是解本题的关键.5.(2022运城二模)如图,已知抛物线与x轴交于点,两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(),在点P运动的过程中,当等腰直角的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.【答案】(1),(2)当或6时,的面积为9(3)存在.点M的坐标为或【解析】【分析】(1)利用待定系数法求出抛物线的解析式,再求出点坐标,然后利用待定系数法求直线的表达式即可;(2)设出、,然后根据两点间距离公式表示出长,解法一:再根据等腰三角形的性质列出的面积表达式,结合面积为建立方程求解,即可解决问题;解法二:利用,根据相似三角形的性质列比例式建立方程求解,即可解决问题;解法三:根据等腰直角三角形的性质推出,依此建立方程求解,即可解决问题;(3)分点在的上方和点在的下方两种情况讨论,根据题意画出图形,构造三角形全等,求出直线上的一点坐标,则可利用待定系数法求出直线的解析式,最后和抛物线的解析式联立求解,即可求出点的坐标.小问1详解】解:将,分别代入中,得解得,∴该抛物线的表达式为,当,,∴,设直线的解析式为,∴,解得,∴直线的表达式为:;【小问2详解】解法一:依题得,,∴,过点F作于N,∵是等腰直角三角形,PD为斜边,∴∴,∴,∴,∴解得,,又∵∴当或6时,的面积为9;解法二:依题得,,∴,在中,当时,,∴.∴,又∵.∴,∴为等腰直角三角形,由勾股定理得,∴,.∴即.∴,∴,解得,,又∵,∴当或6时,的面积为9;解法三:解:依题得,,∴,过点F作于N,∵是等腰直角三角形,PD为斜边,∴,∴,∴,∴,∴,∴(取正),∴,解得,,又∵,∴当或6时,的面积为9;【小问3详解】解:存在,理由如下:由(2)得为等腰直角三角形,∴①如图,当点在的上方时,设与与轴交于一点,

∵,∴,∵,∵,∴,∴,∴,设直线的函数式为,则,解得,∴,则,解得或(舍去),∴此时点的坐标为;②如图,当点在的下方时,过作轴的垂线,过作轴的垂线,两条垂线交于一点,作,交抛物线与点,

由(2)得为等腰直角三角形,∴,∴,即,∵∴,又∵,∵,∴四边形正方形,∵,∴,∴,∴,∴,设直线函数式为,∴,解得,∴,则,解得或(舍去);综上所述,点M的坐标为或.【点睛】本题是二次函数综合题,考查了二次函数与一次函数的交点问题,二次函数的动态几何问题,二次函数与面积的综合,全等三角形的判定和性质,相似三角形的判定和性质以及正方形的性质,解题的关键是能够综合运用所学的数学知识解决问题.6.(2022太原二模)综合与探究:如图,已知直线和抛物线相交于点和点,与x轴相交于点C.

(1)求抛物线的函数表达式和点C的坐标;(2)已知点D的坐标为,判断的形状,并说明理由;(3)试探究在抛物线上是否存在点P,使得为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1),点C的坐标为(2)是等腰直角三角形,理由见解析(3)存在,或【解析】【分析】(1)将点和点代入中,求出的值,进而可得抛物线的函数表达式,把代入中,解得,进而可得点C的坐标;(2)如图,过点A和点C分别作x轴的垂线AE,CF,与过点D的x轴的平行线相交于点E,F,则,,,,,,,可知,,证明,则,,,进而可证是等腰直角三角形;(3)设点P的坐标为,则,,,由题意知,分三种情况求解:①当时,,求解满足要求的,进而可得点坐标;②当时,,求解满足要求的,进而可得点坐标;③当时,且,有,由(2)可知,P为(2)中的点D或点D关于AC的对称点,这两点都不在抛物线上;整理可得满足要求的点坐标.【小问1详解】解:∵点和点在抛物线上,∴解得∴抛物线的函数表达式为;把代入中得,,解得∴点C的坐标为.【小问2详解】解:是等腰直角三角形.理由如下:如图,过点A和点C分别作x轴的垂线AE,CF,与过点D的x轴的平行线相交于点E,F,

∴,,∴∵,,∴,,,∴,在和中∵∴∴,∴∴∴是等腰直角三角形.【小问3详解】解:存在.设点P的坐标为∵,∴,,由题意知,分三种情况求解:①当时,,即解得(不合题意,舍去),∴当时,,∴,即此时为等腰直角三角形∴;②当时,,即解得(不合题意,舍去),当时,,∴,即此时为等腰直角三角形∴;③当时,且,有由(2)可知,P为(2)中的点D或点D关于AC的对称点,∴这两点都不在抛物线上综上所述,存在点或,使得为等腰直角三角形.【点睛】本题考查了二次函数解析式,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,二次函数与几何综合.解题的关键在于对知识的熟练掌握与灵活运用.7.(2021怀化中考)(14分)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)由题意得,点A、B、C的坐标分别为(﹣2,0)、(4,0)、(0,8),设抛物线的表达式为y=ax2+bx+c,则,解得,故抛物线的表达式为y=﹣x2+2x+8;(2)存在,理由:当∠CP′M为直角时,则以P、C、M为顶点的三角形与△MNB相似时,则P′C∥x轴,则点P′的坐标为(1,8);当∠PCM为直角时,在Rt△OBC中,设∠CBO=α,则tan∠CBO==2=tanα,则sinα=,cosα=,在Rt△NMB中,NB=4﹣1=3,则BM==3,同理可得,MN=6,由点B、C的坐标得,BC==4,则CM=BC=MB=,在Rt△PCM中,∠CPM=∠OBC=α,则PM===,则PN=MN+PM=6+=,故点P的坐标为(1,),故点P的坐标为(1,8)或(1,);(3)∵D为CO的中点,则点D(0,4),作点C关于函数对称轴的对称点C′(2,8),作点D关于x轴的对称点D′(0,﹣4),连接C′D′交x轴于点E,交函数的对称轴于点F,则点E、F为所求点,理由:G走过的路程=DE+EF+FC=D′E+EF+FC′=C′D′为最短,由点C′、D′的坐标得,直线C′D′的表达式为y=6x﹣4,对于y=6x﹣4,当y=6x﹣4=0时,解得x=,当x=1时,y=2,故点E、F的坐标分别为(,0)、(1,2);G走过的最短路程为C′D′==2;(4)存在,理由:设点Q的坐标为(x,﹣x2+2x+8),故点Q作y轴的平行线交x轴于点N,交过点C与x轴的平行线于点M,∵∠MQC+∠RQN=90°,∠RQN+∠QRN=90°,∴∠MQC=∠QRE,∵∠ANQ=∠QMC=90°,QR=QC,∴△ANQ≌△QMC(AAS),∴QN=CM,即x=﹣x2+2x+8,解得x=(不合题意的值已舍去),故点Q的坐标为(,).8.(2021广安中考)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.(1)求、的值;(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1)b=2,c=3;(2)t=2,最小值为4;(3)(,)【解析】【分析】(1)利用待定系数法求解即可;(2)过点P作PE⊥x轴,垂足为E,利用S四边形BCPQ=S△ABC-S△APQ表示出四边形BCPQ的面积,求出t的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,证明△PFM≌△QEP,得到MF=PE=t,PF=QE=4-2t,得到点M的坐标,再代入二次函数表达式,求出t值,即可算出M的坐标.【详解】解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),则,解得:;(2)由(1)得:抛物线表达式为y=-x2+2x+3,C(0,3),A(3,0),∴△OAC是等腰直角三角形,由点P运动可知:AP=,过点P作PE⊥x轴,垂足为E,∴AE=PE==t,即E(3-t,0),又Q(-1+t,0),∴S四边形BCPQ=S△ABC-S△APQ==∵当其中一点到达终点时,另一点随之停止运动,AC=,AB=4,∴0≤t≤3,∴当t==2时,四边形BCPQ的面积最小,即为=4;(3)∵点M是线段AC上方的抛物线上的点,如图,过点P作x轴的垂线,交x轴于E,过M作y轴的垂线,与EP交于F,∵△PMQ是等腰直角三角形,PM=PQ,∠MPQ=90°,∴∠MPF+∠QPE=90°,又∠MPF+∠PMF=90°,∴∠PMF=∠QPE,在△PFM和△QEP中,,∴△PFM≌△QEP(AAS),∴MF=PE=t,PF=QE=4-2t,∴EF=4-2t+t=4-t,又OE=3-t,∴点M的坐标为(3-2t,4-t),∵点M在抛物线y=-x2+2x+3上,∴4-t=-(3-2t)2+2(3-2t)+3,解得:t=或(舍),∴M点的坐标为(,).【点睛】本题考查了二次函数综合,涉及到全等三角形判定和性质,等腰直角三角形的性质,三角形面积,用方程的思想解决问题是解本题的关键.9.(2021张家界中考)如图,已知二次函数的图象经过点且与轴交于原点及点.

(1)求二次函数的表达式;(2)求顶点的坐标及直线的表达式;(3)判断的形状,试说明理由;(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.【答案】(1);(2),;(3)等腰直角三角形,理由见解析;(4)【解析】【分析】(1)根据已知条件,运用待定系数法直接列方程组求解即可;(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A、B坐标求出AB解析式即可;(3)根据二次函数对称性可知为等腰三角形,再根据O、A、B三点坐标,求出三条线段的长,利用勾股定理验证即可;(4)根据题意可知动点的运动时间为,在上取点,使,可证明,根据相似三角形比例关系得,即,当、、三点共线时,取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.【详解】解:(1)二次函数的图象经过,且与轴交于原点及点∴,二次函数表达式可设为:将,代入得:解这个方程组得∵二次函数的函数表达式为(2)∵点为二次函数图像的顶点,∴,∴顶点坐标为:,设直线的函数表达式为,则有:解之得:∴直线的函数表达式为(3)是等腰直角三角形,过点作于点,易知其坐标为∵的三个顶点分别是,,,∴,且满足∴是等腰直角三角形(4)如图,以为圆心,为半径作圆,则点在圆周上,依题意知:动点的运动时间为在上取点,使,连接,则和中,满足:,,∴,∴,从而得:∴显然当、、三点共线时,取得最小值,过点作于点,由于,且为等腰直角三角形,则有,,∴动点的运动时间的最小值为:.【点睛】本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.10.(2021上海中考)已知抛物线经过点P(3,0)、Q(1,4).(1)求抛物线的解析式;(2)若点A在直线PQ上,过点A作AB⊥x轴于点B,以AB为斜边在其左侧作等腰直角三角形ABC,①当Q与A重合时,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.【考点】二次函数综合题【解答】解:(1)将P(3,0)、Q(1,4)两点分别带入,得,解出:,故抛物线的解析式是(2)①如图2,抛物线的对称轴是y轴,当Q与A重合时,AB=4,作CH⊥AB于H,∵△ABC是等腰直角三角形∴CH=AH=BH=2∴C到抛物线对称轴的距离为1②如图3,由P(3,0)、Q(1,4)得到直线PQ的解析式为y=-2x+6设A(m,-2m+6),则AB=|-2m+6|,∴CH=AH=BH=|-m+3|当m<3时,=2m-3,=-m+3,将点C(2m-3,-m+3)代入中,解出:m=或m=3(与点B重合,舍)此时:=-2,=,故:C(-2,)当m>3时,同理得到C(3,0),此时A(3,0)与P重合,不合题意,舍去综上可知:C点的坐标是(-2,)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.11.(2021衡阳中考)(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)由题意得:x=,解得x=±2,即可求解;(2)①由△=25﹣4ac=0,即ac=4,即可求解;②求出点M的坐标为(﹣,0)、点E的坐标为(﹣,﹣),即可求解;(3)证明△CMP≌△PNB(AAS),则PM=BN,CM=PN,即可求解.【解答】解:(1)由题意得:x=,解得x=±2,当x=±2时,y==±2,故“雁点”坐标为(2,2)或(﹣2,﹣2);(2)①∵“雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y=x,∵物线y=ax2+5x+c上有且只有一个“雁点”E,则ax2+5x+c=x,则△=25﹣4ac=0,即ac=4,∵a>1,故c<4;②∵ac=4,则ax2+5x+c=0为ax2+5x+=0,解得x=﹣或﹣,即点M的坐标为(﹣,0),由ax2+5x+c=x,ac=4,解得x=﹣,即点E的坐标为(﹣,﹣),故点E作EH⊥x轴于点H,则HE=,MH=xE﹣xM=﹣﹣(﹣)==HE,故∠EMN的度数为45°;(3)存在,理由:由题意知,点C在直线y=x上,故设点C的坐标为(t,t),过点P作x轴的平行线交过点C与y轴的平行线于点M,交过点B与y轴的平行线于点N,设点P的坐标为(m,﹣m2+2m+3),则BN=﹣m2+2m+3,PN=3﹣m,PM=m﹣t,CM=﹣m2+2m+3﹣t,∵∠NPB+∠MPC=90°,∠MPC+∠CPM=90°,∴∠NPB=∠CPM,∵∠CMP=∠PNB=90°,PC=PB,∴△CMP≌△PNB(AAS),∴PM=BN,CM=PN,即m﹣t=|﹣m2+2m+3|,﹣m2+2m+3﹣t=|3﹣m|,解得m=1+(舍去)或1﹣或,故点P的坐标为(,)或(,).12.(2021随州中考)(12分)在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).(1)直接写出抛物线的解析式;(2)如图1,若点P在抛物线上且满足∠PCB=∠CBD,求点P的坐标;(3)如图2,M是直线BC上一个动点,过点M作MN⊥x轴交抛物线于点N,Q是直线AC上一个动点,当△QMN为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标.【分析】(1)根据顶点的坐标,设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,求出a即可得出答案;(2)利用待定系数法求出直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,再运用待定系数法求出直线CP1的解析式为y=2x﹣3,联立方程组即可求出P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,证明△OCE≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=x﹣3,即可求出P2(,﹣);(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.【解答】解:(1)∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴,解得:,∴直线B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论