美联储-菜单成本经济中的非线性动力学?来自美国数据的证据 Nonlinear Dynamics in Menu Cost Economies Evidence from U.S. Data 2024_第1页
美联储-菜单成本经济中的非线性动力学?来自美国数据的证据 Nonlinear Dynamics in Menu Cost Economies Evidence from U.S. Data 2024_第2页
美联储-菜单成本经济中的非线性动力学?来自美国数据的证据 Nonlinear Dynamics in Menu Cost Economies Evidence from U.S. Data 2024_第3页
美联储-菜单成本经济中的非线性动力学?来自美国数据的证据 Nonlinear Dynamics in Menu Cost Economies Evidence from U.S. Data 2024_第4页
美联储-菜单成本经济中的非线性动力学?来自美国数据的证据 Nonlinear Dynamics in Menu Cost Economies Evidence from U.S. Data 2024_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FinanceandEconomicsDiscussionSeries

FederalReserveBoard,Washington,D.C.

ISSN1936-2854(Print)

ISSN2767-3898(Online)

NonlinearDynamicsinMenuCostEconomies?Evidencefrom

U.S.Data

AndresBlanco,CorinaBoar,CallumJones,VirgiliuMidrigan

2024-076

Pleasecitethispaperas:

Blanco,Andres,CorinaBoar,CallumJones,andVirgiliuMidrigan(2024).“NonlinearDynamicsinMenuCostEconomies?EvidencefromU.S.Data,”FinanceandEconomicsDiscussionSeries2024-076.Washington:BoardofGovernorsoftheFederalReserveSystem,

/10.17016/FEDS.2024.076

.

NOTE:StafworkingpapersintheFinanceandEconomicsDiscussionSeries(FEDS)arepreliminarymaterialscirculatedtostimulatediscussionandcriticalcomment.TheanalysisandconclusionssetfortharethoseoftheauthorsanddonotindicateconcurrencebyothermembersoftheresearchstafortheBoardofGovernors.ReferencesinpublicationstotheFinanceandEconomicsDiscussionSeries(otherthanacknowledgement)shouldbeclearedwiththeauthor(s)toprotectthetentativecharacterofthesepapers.

NonlinearDynamicsinMenuCostEconomies?

EvidencefromU.S.Data*

AndresBlancotCorinaBoar‡CallumJones§VirgiliuMidrigan¶

July2024

Abstract

Weshowthatstandardmenucostmodelscannotsimultaneouslyreproducethedispersioninthesizeofmicro-pricechangesandtheextenttowhichthefractionofpricechangesincreaseswithinflationintheU.S.time-series.Thoughthe

Golosovand

Lucas

(2007)modelgeneratesfluctuationsinthefractionofpricechanges,itpredicts

toolittledispersioninthesizeofpricechangesandthereforelittlemonetarynon-neutrality.Incontrast,versionsofthemodelthatreproducethedispersioninthesizeofpricechangesandgeneratestrongermonetarynon-neutralitypredictanearlyconstantfractionofpricechanges.

Keywords:menucosts,inflation,fractionofpricechanges.

*WethankHughMontagandDanielVillarforsharingthedataonthefractionofpricechanges.TheviewsexpressedherearethoseoftheauthorsandnotnecessarilythoseoftheFederalReserveBankofAtlantaortheFederalReserveBoard.

FederalReserveBankofAtlanta,

julioablanco84@.

NewYorkUniversityandNBER,

corina.boar@.

§FederalReserveBoard,

callum.j.jones@.

¶NewYorkUniversityandNBER,

virgiliu.midrigan@.

1

1Introduction

Arobustfeatureofthedataisthatthefractionofpricechangesincreasesinperiodsofhighinflation

.1

Itiswidelybelievedthatmenucostmodelscanreproducethispatternbecausefirmschooseendogenouslythetimingofpricechangesandaremorelikelytorespondtolargershocks.WhetherthisisindeedthecaseornothasimportantimplicationsfortheextenttowhichtheslopeofthePhillipscurvevariesinthetime-seriesandthereforethetradeoffbetweeninflationandoutputstabilizationfacedbymonetarypolicy.

2

BecauseinmenucostmodelsthedistributionofpricechangesalsocriticallyshapestheslopeofthePhillipscurveandthedegreeofmonetarynon-neutrality,

3

weevaluatetheabilityofstandardmenucostmodelstoreproducethecomovementbetweeninflationandthefractionofpricechangesintheU.S.data,whilesimultaneouslyaccountingforthelargedispersioninthesizeofpricechanges.Weconsiderthreecommonly-usedspecificationsforthetechnologyofchangingprices:(i)afixedmenucost,asin

GolosovandLucas

(

2007

),(ii)aCalvo-plusspecificationinwhichwithsomeprobabilityfirmscanchangepricesforfree,andotherwiseneedtopayafixedcost,asin

NakamuraandSteinsson

(

2010

)and(iii)aCalvo-plusspecificationaugmentedwithauniformdistributionofmenucosts,asin

Blanco

etal.

(2024a)

.

Weusethe

KrusellandSmith

(1998)approachtocharacterizethenon-linearsolutionof

eachmenucosteconomyinthepresenceofaggregatemonetarypolicyshocksandthenbackoutthesequenceofshocksthatexactlyreproducesthetimepathofinflationintheU.S.timeseries.Wefindthatthe

GolosovandLucas

(

2007

)modelpredictsthatthefractionofpricechangesincreasesconsiderablyinperiodsofhighinflation,asfirstpointedoutby

Nakamuraetal.

(2018),thoughlessthaninthedata

.4

Asiswellunderstood,however,thismodelpredictstoolittledispersioninthesizeofpricechanges.Incontrast,theothertwovariantsofthemodelthatbetterreproducethedispersioninthesizeofpricechangesimplyanearlyconstantfractionofpricechanges.

Weillustratetheimplicationsofthesepredictionsbystudyinghoweachoftheseeconomies

1See,forexample,

Gagnon

(2009),

Alvarezetal.

(2018),

KaradiandReiff

(2019),

Blancoetal.

(2024a)

and

Cavalloetal.

(2024)

.

2See

Blancoetal.

(2024b)whoshowthatamodelthatreproducestheincreaseinthefractionofprice

changesinperiodsofhighinflationimpliesasharpincreaseintheslopeofthePhillipscurveinthoseperiods,considerablyreducingtheoutputcostsofreducinginflation.

3See

CaballeroandEngel

(2007),

Midrigan

(2011)and

Alvarezetal.

(2016)

.

4

GolosovandLucas

(2007)and

Alvarezetal.

(2018)showthatthe

GolosovandLucas

(2007)model

reproducestherelationshipbetweeninflationandthefractionofpricechangesinacross-sectionofcountries.

2

respondstomonetarypolicyshocksofdifferentsizes.Becausethefractionofpricechanges

increasesconsiderablyinthe

GolosovandLucas

(

2007

)modelinresponsetolargemonetaryshocks,themodelpredictsimportantnon-linearities:therealeffectsfromlargershocksareproportionallysmallerthanthosefromsmallershocks.However,becausethemodelpredictslittledispersioninthesizeofpricechanges,therealeffectsofmonetarypolicyshocksaresmalleveninresponsetosmallshocks.Forexample,thecumulativeimpulseresponsetoa1%monetaryshockis0.14ofthatpredictedbytheCalvomodelwiththesameaveragefractionofpricechanges,andthattoa5%monetaryshockis0.08ofthatintheCalvomodel.Thus,inthe

GolosovandLucas

(2007)moneyisapproximatelyneutralregardlessofthesize

oftheshock.

Incontrast,theothertwovariantsofthemodelthatbetterreproducethedispersioninthesizeofpricechangespredictlargerrealeffects.However,becauseintheseeconomiesthefractionofpricechangesbarelyresponds,eventolargeshocks,theoutputeffectsarenearlylinearinthesizeoftheshock.Specifically,the

NakamuraandSteinsson

(

2010

)economypredictsacumulativeimpulseresponseofoutputtoa1%monetaryshockequalto0.36ofthatintheCalvomodelandtoa5%shockequalto0.30ofthatintheCalvomodel

.5

Similarly,theCalvo-pluseconomyaugmentedwithuniformmenucostspredictsacumulativeimpulseresponseofoutputtoa1%monetaryshockequalto0.58ofthatintheCalvomodelandtoa5%shockequalto0.56ofthatintheCalvomodel.

Ourpaperthereforecorroboratesthefindingsof

Blancoetal.

(

2024a

),wherewemadeasimilarpointusingU.K.micro-pricedata.Relativetothatpaper,herewefocusonasimplermenucosteconomywithoutstrategiccomplementaritiesinprice-settingandcalibratethemodeltomatchU.S.micro-pricestatistics.Inaddition,herewestudythecomovementbetweenaggregateinflationandthefractionofpricechanges,whereasin

Blancoetal.

(

2024a

)westudiedthecomovementbetweensectoralinflationandthefractionofpricechanges.

Weconcludethatanimportantchallengeforthemenucostliteratureistodevelopmodelsthatcansimultaneouslyreproducethemicro-pricedata,aswellastheextenttowhichthefractionofpricechangescomoveswithinflationinthetime-series.In

Blancoetal.

(

2024a

)weproposedonepotentialsolutiontothischallengeusingamenucosteconomyinwhichthelossesfrommisallocationfrompricedispersionwithinmulti-productfirmsarelow.Because

thatmodelreproducesthedispersioninthesizeofpricechangesinthedata,itpredicts

5

Auclertetal.

(2023)alsofindlittleevidenceofnon-linearityinthe

NakamuraandSteinsson

(2010)but,

unlikeus,theydonotconfrontthemodel’spredictionsonthecomovementbetweeninflationandthefractionofpricechangesinthetimeseries.

3

considerablerealeffectsfrommonetarypolicyshocks.Moreover,becauseitpredictsthat

thefractionofpricechangesincreasesconsiderablyintimesofhighinflation,italsopredictshighlynon-linearoutputresponsesandthereforeatime-varyingslopeofthePhillipscurve.

2MotivatingEvidence

Webrieflydescribetheevidencethatmotivatesourpaper.Figure

1

comparesthetimeseriesofU.S.inflationwiththatofthefractionofpricechanges.Wefollow

Nakamuraetal.

(

2018

)inmeasuringinflationusingthegrowthoftheConsumerPriceIndexexcludingshelter.Weusethedataonthefractionofpricechangescomputedby

Nakamuraetal.

(

2018

)usingpricequotescollectedbytheBureauofLaborStatistics.Thisserieswasrecentlyupdatedby

MontagandVillar

(2023)

.6

Wereporttheyear-on-yearchangeinthepriceindexand,forconsistency,theaveragemonthlyfractionofpricechangesintheprecedingyear.

Thefigureshowsthatthefractionofpricechangesincreasessystematicallywithinflation,aspointedoutby

Nakamuraetal.

(2018)and

MontagandVillar

(2023)

.7

Forexample,inthe1990s,wheninflationwaslow,approximately10%ofpriceschangedinagivenmonth.Incontrast,inthe1980s,wheninflationwashigh,approximately17%ofpriceschangedinagivenmonth.Morerecently,thepost-Covidincreaseininflationwasassociatedwithanevenhigherfractionofpricechanges,approximately23%permonth.

Figure1:InflationandtheFractionofPriceChanges

15

10

5

0

-5

0.25

0.15

0.05

inAation

1960198020002020

0.2

0.1

fractionofpricechanges

1960198020002020

Notes:TheshadedareasrepresentNBERrecessions.

6WethankHughMontagandDanielVillarforsharingthedatawithus.

7Thisisarobustfeatureofthedatathathasalsobeendocumentedforothercountries.See,forexample,

Gagnon

(2009),

Alvarezetal.

(2018),

KaradiandReiff

(2019),

Blancoetal.

(2024a)and

Cavalloetal.

(2024)

.

4

3Model

Weevaluatetheabilityofthemenucostmodeltoreproducethecomovementbetweenin-flationandthefractionofpricechangesinthedata.Weconsideraneconomyinwhichacontinuumofmonopolisticallycompetitivefirmsaresubjecttoidiosyncraticandaggregateshocksandfaceamenucostofchangingprices.Weconsiderthreespecificationsofthetech-nologyforchangingprices,allwidelyusedintheliterature:afixedmenucostasin

Golosov

andLucas

(2007),aCalvo-plusspecificationinwhichwithsomeprobabilityfirmscanchange

pricesforfreeasin

NakamuraandSteinsson

(

2010

),andauniformdistributionofmenucostsasin

Blancoetal.

(2024a)

.

3.1Consumers

Wefollow

GolosovandLucas

(2007)inassumingthatpreferencesarelogarithmicincon

-sumptionandlinearinhoursworked,soarepresentativeconsumermaximizes

subjectto

wherectisconsumption,htishoursworked,Ptistheaggregatenominalpriceindex,Btistheamountofgovernmentbondsthatpaythenominalinterestrateit,andDtdenotesprofits.Theoptimallaborsupplychoiceimpliesthatthenominalwageisequaltonominalspending,Wt=Ptct.

3.2MonetaryPolicy

WeassumethatmonetarypolicytargetsnominalspendingMt=Ptct,whichevolvesaccord-ingto

whereµt+1N(µ,σ).OurassumptionsonpreferencesimplythatWt=Mt.

3.3Technology

Thereisacontinuumofmonopolisticallycompetitiveintermediategoodsproducersi∈(0,1),eachproducingadifferentiatedvarietyusingalineartechnology

yit=zitlit,

5

wherezitisthequalityofthevarietyproducedbythefirmandlitistheamountoflabor

usedinproduction.

AperfectlycompetitivefinalgoodssectoraggregatesindividualvarietiesusingaCESaggregatorwithelasticityofsubstitutionσ

Thefinalgoodisusedforconsumptiononly,soyt=ct.Inadditiontoaffectingthefirm’sproductivity,thequalityzitalsoaffectsdemand.Ifpriceswereflexible,firmswouldrespondtoanincreaseinzitbyreducingpricesone-for-one,leavingquality-adjustedpricesandrevenuesunchanged.Theseshocksgenerateanidiosyncraticmotiveforfirmstochangetheirpricesandarewidelyusedinthemenucostliteratureduetotheirtractability.Weassumethatthezitevolvesaccordingto

logzit+1=logzit+εit+1,

whereεit+1~N(0,σ).

LettingPitdenoteanindividualfirm’sprice,thedemandfunctionforthefirm’soutputisgivenby

where

istheaggregatepriceindex.

3.4PriceAdjustmentTechnology

As

CaballeroandEngel

(2007),

Midrigan

(2011)and

Alvarezetal.

(2016)pointout,the

aggregateimplicationsofmenucostmodelsarecriticallyshapedbythedistributionofpricechanges.Wethereforeconsiderthreedifferentspecificationsforthepriceadjustmenttech-nologythatincreasinglyallowthemodeltoreproducethedistributionofpricechangesinthedata.First,wefollow

GolosovandLucas

(

2007

)andassumethatresettingpricesrequires

payingafixedmenucost.Second,wefollow

NakamuraandSteinsson

(2010)andassume

thatwithprobability1−λfirmscanchangepricesforfreeandwithprobabilityλtheyhave

topayafixedmenucost.Third,wefollow

Blancoetal.

(2024a)andassumethat,in

additiontothepossibilityoffreepricechanges,themenucostisidiosyncraticanddrawn

6

eachperiodforauniformdistributionU[0,].Inallthesecases,weassumethattheprice

adjustmentcostisdenominatedinunitsoflabor.Fromnowon,werefertotheseeconomiesasGL,NSandUniform,respectively.

3.5FirmObjective

Thefirmmaximizestheexpectedpresentvalueofprofits

whereτ=1/(σ−1)isasubsidythateliminatesthemarkupdistortionthatwouldariseevenwithflexibleprices,ξitisthepossiblyrandomcostofchangingpricesandIitisanindicatorequaltooneifthefirmadjustsitspriceandzerootherwise.

Tocharacterizethefirm’soptimalchoices,wefirstexpressitsobjectiveintermsofitspricegapwhichwedefineas

Similarly,wedefinetheaggregatepricegapastheCESweightedaverageoffirmpricegaps

Withthisnotationinplace,wecanwritethefirm’sobjectiveasafunctionofonlyitsownandaggregatepricegaps

Tocharacterizethepriceadjustmentdecision,let

denotethefirm’spricegapintheabsenceofapricechange,whichisalsothefirm’sidiosyn-craticstate.Eachperiodthefirmchooseswhethertoadjustitspriceornot.Ifthefirmdoesnotadjust,itspricegapisxit=sit.Ifthefirmadjustsitsprice,itresetsthepricegapto

xit=x,whichiscommontoallfirmsthatadjust.Thefirmrecognizesthatitsstateevolves

overtimeaccordingto

sit+1=xitexp(εit+1−µt+1).

Becausethisisamodelwithaggregateuncertaintyinwhichheterogeneousfirmsfollownon-lineardecisionrules,theentiredistributionofpricegaps,aninfinitedimensionalobject,

7

isnecessarytocharacterizetheequilibrium.Toseewhythisisthecase,letvdenotethe

valueofadjustingthepriceinperiodtandv(s)thevalueofnotadjustingthepricefora

firmwithidiosyncraticstates.Thefirmadjustsitspricewithprobability

inGLinNS

inUniform.

LettingFt(s)denotethedistributionoffirms,theequilibriumaggregatepricegapsatisfies

Thus,computingtheaggregatepricegapneededtosolvethefirm’sprobleminequation(

2

)requiresinformationabouttheentiredistributionoffirmpricegaps.

Wecircumventthecurseofdimensionalitybyusingthe

KrusellandSmith

(

1998

)approachtocharacterizehowXtevolvesovertimeasafunctionofasinglemomentofthedistributionofFt(s),namely

Specifically,wesimulatealonghistoryofmonetarypolicyshocks,calculatethetimeseriespathforStandXtimpliedbythemodelanduseprojectionmethodstoupdatetheperceivedaggregatepricegapfunction

Xt=X(St),

whereX(·)isalinearcombinationofChebyshevpolynomialsthatallowustocapturepo-tentialnon-linearities.

3.6Parameterization

Aperiodisamonthandwesetthediscountfactorβtoanannualizedvalueof0.96andtheelasticityofsubstitutionσequalto3.Following

NakamuraandSteinsson

(

2010

)and

Auclert

etal.

(2022),intheNSandUniformspecificationsoftheadjustmentcostweassumethat

thevalueofλissuchthat75%ofpricechangesarefree.

Table

1

reportstheresultoftheparameterization.Wecalibratethemeanandvolatilityofthemoneygrowthrateµandσm,thevolatilityofidiosyncraticqualityshocksσzandthe

menucostparametertotargettheaveragefractionofpricechanges,themediansizeofa

pricechange,andthemeanandstandarddeviationofinflation.Thesestatisticsarecomputed

8

fortheperiod1979-2014forwhich

Nakamuraetal.

(

2018

)reportamediansizeofregular

pricechangesof0.075.UsingthedatainFigure

1

,wecomputeanaveragefrequencyofpricechangesof0.105,anaverageannualizedinflationrateof3.4%andastandarddeviationofannualizedinflationof2.6%.AsPanelAofthetableshows,alleconomiesmatchthesetargetsperfectly.

PanelBofthetablereportstheparametervaluesrequiredtomatchthemoments.Since,aspointedoutby

BilsandKlenow

(2004)and

GolosovandLucas

(

2007

),theaveragesizeofapricechangeislargerelativetoaggregateinflation,themodelimpliesthatidiosyncraticshocksareapproximately3–4timesmorevolatilethanaggregateshocks.ThemenucostparameterisrelativelysmallintheGLeconomyandincreasesasweintroducerandomnessinthepriceadjustmentcosts.

Table1:Parameterization

A.Moments

DataGLNSUniform

I.Targeted

fraction∆p

0.105

0.105

0.105

0.105

median|∆p|

0.075

0.075

0.075

0.075

meaninflation

0.034

0.034

0.034

0.034

stddev.inflation

0.026

0.026

0.026

0.026

II.Not

targeted

kurtosis∆p

1.466

2.402

3.346

10thpctile|∆p

0.065

0.012

0.013

25thpctile|∆p

0.068

0.032

0.034

75thpctile|∆p

0.084

0.174

0.136

90thpctile|∆p

0.095

0.196

0.202

B.CalibratedParameterValues

GLNSUniform

μ

meanmoneygrowthrate

0.034

0.034

0.034

σm

s.d.monetaryshocks

0.008

0.009

0.010

σz

s.d.idios.shocks

0.024

0.037

0.037

menucost

0.015

0.246

2.818

Note:Themoneygrowthrateisannualized.Themenucostparameterisexpressedrelativetototalrevenue

inagivenperiod.

9

3.7TheDistributionofPriceChanges

Wenextinvestigatethemodels’implicationsforbroadermomentsofthedistributionofpricechanges.Figure

2

plotsthedistributionofpricechangesimpliedbyeachofthethreeeconomies.Asiswellunderstood,theGLmodelproducesabi-modaldistributionofpricechangeswithneitherverysmallnorverylargepricechanges.ThisisalsoreflectedintheuntargetedstatisticsreportedinPanelAofTable

1

whichshowsthatinthiseconomythedistributionofthesize(absolutevalue)ofpricechangesisverycompressed,rangingfroma10thpercentileof6.5%toa90thpercentileof9.5%.Analternativewayofsummarizingthedispersioninthesizeofpricechangesisthekurtosisofpricechanges,whichisequalto1.5.

BoththeNSandtheUniformeconomiesgeneratemoredispersioninthesizeofpricechangesandahigherkurtosis,butthedistributionintheNSeconomyhasjumps,reflectingthattheadjustmenthazardisastepfunction,asintheGLeconomy.Incontrast,thesmootheradjustmenthazardinducedbytheuniformmenucostdistributionintheUniformeconomyproducesasmoothdistributionofpricechanges.ThoughwedonothavedirectaccesstotheBLSmicro-pricedata,theevidenceonthedistributionofpricechangesinexistingstudiesismostconsistentwiththepredictionsoftheUniformeconomy.Forexample,usingthesameBLSdata

KlenowandKryvtsov

(2008)reportaunimodaldistributionof

regularpricechanges,with25%ofpricechangesbelow2.5%.Thispatternhasalsobeendocumentedforothercountries(see

Alvarezetal.,

2016

forFrance,

Blancoetal.,

2024a

fortheUKand

Gautieretal.,

forthcoming

for11Europeancountries),andforspecificsectors(see

Midrigan,

2011)

.8

4NonlinearDynamics?

Becausethefractionofpricechangesvariesovertimeinmenucosteconomies,thesemodelspredictpotentiallynonlinearresponsestoaggregateshocks.Wenextinvestigatetheextentofthesenonlinearities.

8Arecentpaperby

Alvarezetal.

(2021)usesdatafromagrocerystoreanddocumentsthat,after

controllingformeasurementerror,thedistributionofpricechangesisbimodal,featuringaconsiderabledipnearzero.Thisistrueforallthecountriesintheirsample,exceptfortheU.S.,forwhichthedistributionisunimodal.Suchabimodaldistributioncanberationalizedwithamodelwithrandommenucostsbutnofreepricechanges.WestudythismodelintheAppendixandshowthatithassimilaraggregateimplicationsastheNSandUniformeconomies.

10

Figure2:DistributionofPriceChanges

GL

40

30

20

10

0

-0.4-0.200.20.4

"p

6

4

2

0

NS

8

6

4

2

0

-0.4-0.200.20.4

"p

Uniform

-0.4-0.200.20.4

"p

4.1TheFractionofPriceChanges

WestartbygaugingtheabilityofeachofthethreeeconomiesabovetoreproducethefluctuationsinthefractionofpricechangesobservedintheU.S.timeseries.Tothatend,weusethenonlinearsolutionofeachmodeltobackoutthehistoryofmonetaryshocksμtthatallowseachmodeltoexactlyreproducethetimeseriesofinflationinFigure

1

.9

Figure

3

contraststheseriesforthefractionofpricechangesinthemodelandinthedata.Astheleftpanelshows,theGLmodelpredictssignificantmovementinthefractionofpricechanges,butnotasmuchasinthedata.Forexample,in1980thefractionofpricechangesinthedataincreasedto0.17andinthemodelitincreasedto0.14

.10

Similarly,duringthepost-COVIDinflationepisode,thefractionofpricechangesincreasedto0.23inthedataandtoonly0.13inthemodel.Overall,aregressionofthefractionofpricechangesontheabsolutevalueofinflationforthe1979-2014sampleperiodin

Nakamuraetal.

(

2018

)impliesaslopecoefficientof0.63%inthedataand0.32%inthemodel,sotheGLmodelgenerateshalfofthecomovementbetweeninflationandthefractionofpricechangesinthedata.

ThemiddleandrightpanelsofFigure

3

showthattheNSandUniformeconomiesimplymuchsmallerfluctuationsinthefractionofpricechanges:thefractionofpricechangesneverexceeds12%ineithereconomy.Theslopecoefficientfromregressingthefractionofpricechangesontheabsolutevalueofinflationis0.1%intheNSeconomyand0.07%inthe

9Forsimplicity,weassumedthatthemonetarypolicyshocksaretheonlysourceofaggregateuncertainty.Ourresultswouldbeidenticalifwealsoallowedforaggregateproductivityshocks,providedthesealsofollowarandomwalk,sincewhatmattersistheprocessfornominalmarginalcosts.

10Thesenumbersaresimilartothoseobtainedby

Nakamuraetal.

(2018)

.

0.25

0.15

0.05

Figure3:FractionofPriceChanges

0.2

0.1

0.25

0.15

0.05

GL

data

mod

el

1960198020002020

0.2

0.1

0.25

0.15

0.05

NS

1960198020002020

0.2

0.1

Uniform

1960198020002020

Notes:TheshadedareasrepresentNBERrecessions.

Uniformeconomy,muchsmallerthanthe0.63%inthedata.

In

Blancoetal.

(2024a)weshowthattheresponseofthefractionofpricechangesto

aggregateshocksdependsonthesizeoftheshockrelativetothedispersioninpricechanges.Modelsthataccountforthedispersionofpricechangespredictthatidiosyncratic,ratherthanaggregateshocksdeterminemostoftheadjustmentdecisions,renderingthefractionofpricechangesnearlytime-invariantwhenweconfrontthemodelwithaggregateshocksofsimilarmagnitudetothoseneededtoaccountfortime-seriesfluctuationsintheU.S.inflationrate.Forlargershocks,eventheseversionsofthemenucostmodelgeneratefluctuationsinthefractionofpricechanges.However,suchlargeshockswouldgeneratealotmorevariationininflationthanobservedinthedata.

Thus,weconcludethatnoneofthemenucostmodelsstudiedinthispapercansimul-taneouslyreproducethemicro-pricedataandthecomovementbetweeninflationandthefractionofpricechanges.Ontheonehand,versionsofthemodelthatgeneratesubstantialfluctuationsinthefractionofpricechanges,suchasGL,predicttoolittledispersioninthesizeofpricechanges.Ontheotherhand,versionsofthemodelthatreproducethelargedispersioninthesizeofpricechanges,suchasNSandUniform,predictanearlyconstantfractionofpricechanges.

Asweillustratebelow,thedispersioninthesizeofpricechangescriticallydeterminestherealeffectsofmonetaryshocks,andfluctuationsinthefractionofpricechangesarecrucialindetermininghownonlineartheserealeffectsare.Therefore,animportantchallengeformenucostmodelsistosimultaneouslyaccountforbothofthesefeaturesofthedata.In

Blancoet

11

12

al.

(2024a)weprovideonepotentialsolutiontothischallengeusingamulti-productmenu

costmodelwithalowdegreeofmisallocationinsidethefirm.

4.2RealEffectsofMonetaryShocks

Wenextinvestigatetheextentofnonlinearitiesthatthethreemodelsimplybystudyinghoweachoftheseeconomiesrespondst

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论