版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年二轮复习解答题专题六:解直角三角形的应用背靠背型典例分析例(2022安徽中考)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:,,.专题过关1.(2022泸州中考)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).2.(2022抚顺中考)如图,B港口在A港口南偏西方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西方向,B港口在货轮的北偏西方向,求此时货轮与A港口的距离(结果取整数).(参考数据:)3.(2022怀化中考)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上,C村在B村的正东方向且两村相距2.4千米.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)4.(2022宿迁中考)如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号).5.(2022铜仁中考)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示.在C处测得桥墩顶部A处的仰角为和桥墩底部B处的俯角为,在D处测得桥墩顶部A处的仰角为,测得C、D两点之间的距离为,直线、在同一平面内,请你用以上数据,计算桥墩的高度.(结果保留整数,参考数据:)
6.(2022呼和浩特中考)“一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像的高度,某数学兴趣小组在处用测角仪测得雕像顶部的仰角为,测得底部的俯角为.已知测角仪与水平地面垂直且高度为1米,求雕像的高.(用非特殊角的三角函数及根式表示即可)
7.(2022威海中考)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈.
8.(2022聊城中考)(8分)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)9.(2022河池中考)如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).10.(2022新疆兵团中考)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为,看这栋楼底部的俯角为,已知两楼之间的水平距离为,求这栋楼的高度.(参考数据:)11.(2022广元中考)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.
12.(2022驻马店二模)无人机是当下年轻人娱乐竞技的方式之一.某无人机兴趣小组在广场上开展竞技活动(如图),比赛谁测量某写字楼BC的高度精确,其中小明操作的无人机在离地面30米的D处,无人机测得操控者小明(点A)的俯角为37°,测得写字楼顶端点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,请帮助小明根据以上数据计算写字楼BC的高度.(注:点A,B,C,D都在同一平面上.(参考数据:,,)13.(2022周口扶沟二模)九年级数学“综合与实践”的活动课题是“测量物体的高度”,第一小组和第二小组的成员分别采用不同的方案测量古树的高度,下面是他们的研究报告的部分记录内容.课题:测量古树的高度AB组别第一小组第二小组示意图(说明:图中的所有点均在同一竖直平面内,其中点C,B,E,G在同一水平线上,点D,M,F,H在同一水平线上)方案用高度为1.4m的测角仪在C处测得古树顶端A处的仰角为40°,并测得点C到古树的水平距离CB为9.76m用高度为1.4m的测角仪在G处测得古树顶端A处的仰角为45°,在E处测得古树顶端A处的仰角为55°,并测得E,G两点间的距离为2.56m参考数据tan40°≈0.84,tan55°≈1.43,计算过程在Rt△ADM中,DM=CB=9.76,∠ADM=40°,,∴AM=DM•tan40°≈9.76×0.84≈8.2(m)∴AB=AM+BM≈8.2+1.4=9.6(m)……组员签字(1)请完成第二小组成员的计算过程.(结果保留一位小数)(2)你认为哪个小组的测量方案得到的结果更加准确,请说明理由.14.(2022河南镇平一模)某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC长为48米,在点D处测得桥墩最高点A的仰角为35°,CD平行于水平线BM,CD长为16米,求桥墩AB的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.73)15.(2022河南辉县二模)如图所示,为了知道古塔AB的高度,某数学活动小组利用测角仪和米尺等工具进行如下操作:在建筑物上的C处测得古塔顶端A的仰角为45°,在C处测得古塔底端B的俯角为40°,测得建筑物CD的高度为15米,且CD⊥BD.根据测量数据,请求出古塔AB的高度.(参考数据:,,,,结果精确到0.01米)16.(2022河南社旗一模)手机测距可以测量物体高度、宽度等,这些测距软件是基于几何学原理设计的.测量时只需要输入身高,再用手机拍摄功能将准星对准物体顶端和底部拍摄图片,程序就会计算出物体的高度.某款测距提供的测高模式如下:点都在同一平面内,手机位置为点,待测物体为,且和均与地面垂直.从点处测得顶端的仰角为,底部的俯角为.奋进小组的同学想用上述方式手动计算某景区宣传广告牌的高度.如图2,经过测量得到,仰角,俯角,求出广告牌的高度(参考数据:,结果精确到0.1).17.(2022平顶山一模)始建于北宋皇佑元年的开封铁塔,至今已有近千年的历史,被誉为“天下第一塔”.为了测量铁塔的高度,甲、乙两同学分别在塔的东西两侧的A,B.两处(点A.C,B在同一条直线上),测得塔顶D的仰角分别为45°和65°,已知两人之间的距离约为82米,求塔CD的高度,(精确到1米)(参考数据sin65°≈0.91.cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)18.(2022南阳宛城一模)如图,一艘货船以20nmile/h的速度向正南方向航行,在A处测得灯塔B在南偏东方向,航行5h后到达C处,测得灯塔B在北偏东方向,求C处距离灯塔B的距离BC(结果精确到0.1,参考数据:,,,).19.(2022洛阳伊川一模)河南省开封市铁塔始建于公元1049年(北宋皇佑元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明的眼睛到地面的距离AB为1.7米,他站在点A处测得塔顶D的仰角为45°,小颖的眼睛到地面的距离EF为1.5米,她站在点E处测得塔顶D的仰角为38°.已知小明与小颖相距125米,求铁塔CD的高度.(结果精确到1米.参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)20.(2022河南汝阳一模)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得前方小岛C的俯角为30°,水平飞行20km后到达B处,发现小岛在其后方,测得小岛的俯角为45°.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
21.(2022洛阳一模)随着科学技术的不断进步,无人机被广泛应用到实际生活中,小明利用无人机来测量广场B,C两点之间的距离.如图所示,小明站在广场的B处遥控无人机,无人机在A处距离地面的飞行高度是21.7m,此时从无人机测得广场C处的俯角为63°,若小明的身高,(点A,E,B,C在同一平面内).求B,C两点之间的距离(结果精确到0.1m).(,,)22.(2022河南林州一模)如图,小东在教学楼距地面8米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(2022河南滑县一模)学完解直角三角形后,某数学兴趣小组准备用所学的知识测量河南郑州花园口某处黄河的宽度.他们制定了测量方案,并利用课余时间完成了实地测量.测量项目和测量数据如下表:项目测量花园口某处黄河的宽度成员组长:×××组员:××××××测量工具无人机(可测量无人机离水面的高度及俯角)示意图
说明:遥控无人机并控制在河面(花园口某处黄河的宽度)正上方的D处保持静止(悬停),利用无人机测得无人机距水面的高度,并分别测得俯视河面A,B两处的角度测量数据第一次第二次平均值第一次第二次平均值第一次第二次平均值根据以上信息,解答下列问题:(1)请利用上表中的测量数据,帮助该数学兴趣小组计算出花园口某处黄河的宽度.(结果保留整数参考数据:,,,)(2)有同学提出一个方案,直接利用无人机测量花园口某处黄河的宽度,由B处正上方水平匀速飞行到A处正上方,即可知道河面的宽度,请你分析该方案是否可行,并说明理由.(3)该数学兴趣小组要写出一份完整的课题活动报告,除上表中的项目外,你认为还需要补充哪些项目?(写出一个即可)24.(2022鹤壁一模)如图1是鹤壁市玄天洞石塔,原名玲珑塔,是我省现存最大的一座楼阁式石塔,玄天洞石塔坐东朝西,为九级重檐平面四角楼阁式建筑,此塔始建于元朝,重建于明代,时称天塔,因该塔屹立于淇河北岸玄天洞东南,又得名玄天洞石塔,某数学兴趣小组开展了测量“玄天洞石塔的高度”的实践活动,具体过程如下:方案设计:如图2,石塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B三点在同一条直线上)数据收集:通过实地测量,地面上A,B两点的距离为20m,∠CAD=45°,∠CBD=58°.问题解决:求石塔CD的高度.(结果保留一位小数.参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.(2022安阳一模)在一次数学活动中,某学生在市田径运动馆观礼台上距离地面6m处A点测得正前方旗杆顶端B点的仰角为45°,旗杆底部C点的俯角为37°.请求出该运动馆内旗杆BC的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(2022山西二模)某校“综合与实践”小组来到太原文瀛公园进行参观研学,对人民革命烈士纪念碑的高度进行了实地测量.项目操作如下:如图,测角仪的高度米,他们分别在点C和点D处测得纪念碑顶端A的仰角分别为,且米,A,E,C,B,F,D,G在同一竖直平面内,且E,F,G在同一条水平线上,C,B,D在同一条水平线上,求纪念碑的高度.(结果精确到0.1米,)27.(2022山西三模)山西省立第一中学——中共太原支部的摇篮,其旧址位于文瀛湖南岸,某综合实践小组想测量该旧址校门牌楼的高度,他们在校门正前方的平台上的点C处测得校门底端B的俯角为,在平台上的点D处测得校门顶端A的仰角为.平台平行于地面,测得距地面的高度为,的长为.点A,B,C,D,M,N均在同一竖直平面内.请你帮助该小组求校门牌楼的高度.(结果精确到,参考数据:,,,)
28.(2022山西侯马二模)如图1是2022年北京冬奥会首钢滑雪大跳台,曲线的设计灵感来自敦煌“飞天”飘带,又名“雪飞天”,它是世界上首例永久性保留和使用的滑雪大跳台场馆.如图2,为测量“雪飞天”的高度,测得大跳台跨度AB为140m,出发区CD为20m,且,AD为大跳台钢支架,在点A处测得点D的仰角∠DAB=75°,在点C处测得点B的俯角∠ECB=30°.(测角仪的高度忽略不计)(1)求大跳台出发区CD距离地面AB的高度.(结果精确到1m;参考数据:,,,)(2)据了解,“雪飞天”需要造雪,分别用雪枪和雪炮来满足对于雪量和雪质的不同要求,雪炮出雪量大,适合室外滑雪场快速铺雪,雪枪造雪分布比较平均,相对造雪量比较小.若每台雪枪每小时出雪量比雪炮少,且一台雪枪出雪所用的时间与一台雪炮出雪所用的时间相等.求每台雪枪和雪炮每小时的出雪量.29.(2022河南邓州一模)横跨邓州市湍河两岸的穰城大桥建成通车,改变了湍河两岸的交通格局,必将显著提升邓州市湍河南北两岸和产业集聚区与中心城区的联动性和便捷性.穰城大桥塔造型取自甲骨文和早期金文中的“邓”字,意为双手捧着装满粮食的陶豆,上扬下覆,取上承“甘露”,下纳“地气”之意(如图1),为了测量桥的塔冠顶到水面的高度(如图2),小明操控无人机,在距水面1m的点C处测得顶端A的仰角为45°,直行前进130m(),在距水面2m的点D处,测得顶端A的仰角为53°,求塔冠顶到水面的高度AB(精确到1m,,,).30.(2022郑州外国语一模)随着科技的进步,无人机被广泛应用到实际生活中,小明利用无人机测量学校的篮球场上B、C两点之间的距离.如图所示,小明站在球场B处遥控无人机,无人机在A处距地面的飞行高度为41.6m,此时从无人机测球场C处的俯角为63°.他抬头仰视无人机时,仰角为α.若小明的身高BE=1.6m,EA=50m(点A,C,B,E在同一平面内),求B、C两点之间的距离(结果精确到1m)(参考数据sin63°≈0.89,cos63°≈0.45,tan63°≈1.96).31.(2022河南商水二模)2021年10月23日,我国首艘万吨级海事巡逻船“海巡09”轮(如图1)在广州南沙列编,加入中国海事执法序列,标志着我国目前吨位最大、装备先进、综合能力强,具有世界领先水平的公务执法船正式投入使用.如图2,已知“海巡09”轮上午9时在B市的南偏东25°方向上的点A处,且在C岛的北偏东58°方向上;B市在C岛的北偏东28°方向上,且距离C岛372km,此时,“海巡09”轮沿着AC方向以30km/h的速度航行,问:“海巡09”轮大约需要多长时间到达C岛?(参考数据:,,,)32.(2022郑州一模)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东方向上,同时位于A处的北偏东方向上的B处,救生船接到求救信号后,立即前往救援.求的长(结果取整数).参考数据:,取1.73.
33.(2022河南实验中学一模)黄河是中华文明最主要的发源地,中国人称其为“母亲河”.为落实黄河文化的传承弘扬,某校组织学生到黄河某段流域进行研学旅行.某兴趣小组在只有米尺和测角仪的情况下,想要求出河南段黄河某处的宽度(不能到对岸)如图,已知该段河对岸岸边有一点A,兴趣小组以A为参照点在河这边沿河边任取两点B、C,测得,,量得的长为300m.求河的宽度.(结果精确到1m,参考据,,)
2023年二轮复习解答题专题六:解直角三角形的应用背靠背型方法点睛解直角三角形的实际应用题解题方法审题、分析题意,将已知量和未知量弄清楚,明确题目中的一些名词、术语的含义,如仰角、俯角、坡角、坡度、方位角等;若所给三角形是直角三角形,确定合适的边角关系进行计算;若不是直角三角形,可尝试添加辅助线,把它们分割成一些直角三角形或矩形,把实际问题转化为直角三角形问题进行解决.此外,在测量问题中往往会涉及测角仪、身高等与计算无关的数据,在求建筑物高度时不要忽略这些数据.模型典例分析例(2022安徽中考)如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:,,.【答案】96米【解析】【分析】根据题意可得是直角三角形,解可求出AC的长,再证明是直角三角形,求出BC的长,根据AB=AC-BC可得结论.【详解】解:∵A,B均在C的北偏东37°方向上,A在D的正北方向,且点D在点C的正东方,∴是直角三角形,∴,∴∴∠A=90°-∠BCD=90°-53°=37°,在Rt△ACD中,,CD=90米,∴米,∵,∴∴,∴即是直角三角形,∴,∴米,∴米,答:A,B两点间的距离为96米.【点睛】此题主要考查了解直角三角形-方向角问题的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题.专题过关1.(2022泸州中考)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【解析】【分析】如图,过点D作DE⊥AB于点E,根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10nmile,BC=8nmile.再根据锐角三角函数即可求出B,D间的距离.【详解】解:如图,过点D作DE⊥AB于点E,根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10nmile,BC=8nmile.在Rt△ABC中,AC=BC=8,∴AB=BC=16(nmile),在Rt△ADE中,AD=10nmile,∠EAD=60°,∴DE=AD•sin60°=10×=(nmile),AE=AD=5(nmile),∴BE=AB-AE=11(nmile),∴BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.2.(2022抚顺中考)如图,B港口在A港口南偏西方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西方向,B港口在货轮的北偏西方向,求此时货轮与A港口的距离(结果取整数).(参考数据:)
【答案】货轮距离A港口约141海里【解析】【分析】过点B作于点H,分别解直角三角形求出AH、HC即可得到答案.【详解】解:过点B作于点H,根据题意得,,
在中,,∵,,∴(海里)(海里)在中,∵∴.∴海里答:货轮距离A港口约141海里.【点睛】本题主要考查了解直角三角形的实际应用,正确理解题意作出辅助线构造直角三角形是解题的关键.3.(2022怀化中考)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A位于C村西南方向和B村南偏东60°方向上,C村在B村的正东方向且两村相距2.4千米.有关部门计划在B、C两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.(参考数据:≈1.73,≈1.41)【答案】不穿过,理由见解析【解析】【分析】先作AD⊥BC,再根据题意可知∠ACD=45°,∠ABD=30°,设CD=x,可表示AD和BD,然后根据特殊角三角函数值列出方程,求出AD,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A作AD⊥BC,交BC于点D,根据题意可知∠ACD=45°,∠ABD=30°.设CD=x,则BD=2.4-x,在Rt△ACD中,∠ACD=45°,∴∠CAD=45°,∴AD=CD=x.Rt△ABD中,,即,解得x=0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.4.(2022宿迁中考)如图,某学习小组在教学楼的顶部观测信号塔底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼的高度为20m,求信号塔的高度(计算结果保冒根号).【答案】(20+20)m.【解析】【分析】过点A作AE⊥CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt△ADE中,求出AE的长,在Rt△ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE⊥CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∴四边形ABDE是矩形,∴DE=AB=20m,在Rt△ADE中,∠AED=90°,∠DAE=30°,DE=20m,∵tan∠DAE=,∴m,在Rt△ACE中,∠AEC=90°,∠CAE=45°,∴△ACE是等腰直角三角形,∴m,∴CD=CE+DE=(20+20)m,∴信号塔的高度为(20+20)m.【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.5.(2022呼和浩特中考)“一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像的高度,某数学兴趣小组在处用测角仪测得雕像顶部的仰角为,测得底部的俯角为.已知测角仪与水平地面垂直且高度为1米,求雕像的高.(用非特殊角的三角函数及根式表示即可)
【答案】米【解析】【分析】过点作于,则四边形是矩形,则,在与中,分别表示出,根据即可求解.【详解】如图,过点作于,则四边形是矩形,
,中,,,中,,,米答:雕像的高为米【点睛】本题考查了解直角三角形的实际应用,掌握直角三角形中的边角关系是解题的关键.6.(2022威海中考)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A,B两个观测点,然后选定对岸河边的一棵树记为点M.测得AB=50m,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m).参考数据:sin22°≈,cos22°≈,tan22°≈,sin67°≈,cos67°≈,tan67°≈.
【答案】约为1.7米【解析】【分析】过点M作MN⊥AB,利用正切函数得出AN≈,BN≈,结合图形得出,然后求解即可.【详解】解:过点M作MN⊥AB,
根据题意可得:,∴AN≈,∴BN≈∵AN+BN=AB=50,∴,解得:MN=m,∴河流的宽度约为1.7米.【点睛】题目主要考查利用锐角三角函数解决实际问题,理解题意,结合图形进行求解是解题关键.7.(2022河池中考)如图,小敏在数学实践活动中,利用所学知识对他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).【答案】59m【解析】【分析】过点C作CE⊥AB于点E,则∠AEC=∠BEC=90°,先证明四边形BECD是矩形,BE=CD=36m,在Rt△BCE中,∠BCE=45°,BE=CE=CD=36m,在Rt△ACE中,∠ACE=33°,CE=36m,求得AE≈23.4m,进而得到居民楼AB的高度.【详解】解:如图,过点C作CE⊥AB于点E,则∠AEC=∠BEC=90°,由题意可知∠CDB=∠DBE=90°,∴四边形BECD是矩形,∴BE=CD=36m,由题意得,CD=36m,∠BCE=45°,∠ACE=33°,在Rt△BCE中,∠BCE=45°,∴∠EBC=90°-∠BCE=45°,∴∠EBC=∠BCE,∴BE=CE=CD=36m,在Rt△ACE中,∠ACE=33°,CE=36m,∴AE=CEtan33°≈23.4m,∴AB=AE+BE=23.4+36=59.4≈59(m).答:居民楼AB的高度约为59m.【点睛】此题考查了解直角三角形的应用中的仰角俯角问题,熟练掌握直角三角形的边角关系是解题的关键.8.(2022新疆兵团中考)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为,看这栋楼底部的俯角为,已知两楼之间的水平距离为,求这栋楼的高度.(参考数据:)【答案】这栋楼的高度为:米【解析】【分析】如图,过A作AE⊥BC于E,在Rt△AEB和Rt△AEC中,根据正切的概念分别求出BE、EC,计算即可.【详解】解:过A作于E,∴由依题意得:,和中,∵,∴,∴∴这栋楼的高度为:米.【点睛】本题考查是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.9.(2022广元中考)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.
【答案】隧道EF的长度米.【解析】【分析】过点A作AG⊥CD于点G,然后根据题意易得AG=EG=DG,则设AG=EG=DG=x,进而根据三角函数可得出CG的长,根据线段的和差关系则有,最后问题可求解.【详解】解:过点A作AG⊥CD于点G,如图所示:
由题意得:,∴△EAD是等腰直角三角形,∴AG=EG=DG,设AG=EG=DG=x,∴,∴,解得:,∴,∴;答:隧道EF的长度米.【点睛】本题主要考查解解直角三角形,熟练掌握三角函数是解题的关键.10.(2022河南镇平一模)某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30°的河床斜坡边,斜坡BC长为48米,在点D处测得桥墩最高点A的仰角为35°,CD平行于水平线BM,CD长为16米,求桥墩AB的高(结果保留1位小数).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.73)【22题答案】【答案】72.4米.【解析】【分析】延长DC交AB于点E,则EDBM,可证得∠AED=∠ABM=90°,∠ECB=∠CBM=30°,在Rt△BCE中,利用直角三角形的性质可求出BE的长;再利用勾股定理求出CE的长,即可求出DE的长,然后解直角三角形求出AE的长,从而可求出AB的长.【详解】解:如图所示,延长DC交AB于点E,则EDBM,
在中,(米),(米),∴(米),(米),在中,∵,∴(米),∴(米).答:桥墩AB的高约为72.4米.【点睛】此题考查了三角函数应用,解题的关键是根据题意做出辅助线构造直角三角形.11.(2022河南辉县二模)如图所示,为了知道古塔AB的高度,某数学活动小组利用测角仪和米尺等工具进行如下操作:在建筑物上的C处测得古塔顶端A的仰角为45°,在C处测得古塔底端B的俯角为40°,测得建筑物CD的高度为15米,且CD⊥BD.根据测量数据,请求出古塔AB的高度.(参考数据:,,,,结果精确到0.01米)【答案】32.86米【解析】【分析】过C作CE⊥AB于E,则四边形BDCE是矩形,得BE=CD=15m,再由锐角三角函数定义求出CE=AE=17.86m,即可解决问题.【详解】解:过点C作CE⊥AB,垂足为E.如图,由题意知,∠ACE=45°,∠BCE=40°,CD=15.∵CE⊥AB,CD⊥BD,AB⊥BD,∴∠CDB=∠DBE=∠BEC=90°.∴四边形CDBE是矩形.∴BE=CD=15m.在Rt△BCE中,∵,∴m.在Rt△ACE中,∵∠ACE=45°,∴AE=CE=17.86m.∴AB=AE+BE≈17.86+15=32.86m.答:古塔AB的高度约为32.86米.【点睛】本题考查了解直角三角形—仰角俯角问题,正确作出辅助线构造直角三角形是解题的关键.12.(2022平顶山一模)始建于北宋皇佑元年的开封铁塔,至今已有近千年的历史,被誉为“天下第一塔”.为了测量铁塔的高度,甲、乙两同学分别在塔的东西两侧的A,B.两处(点A.C,B在同一条直线上),测得塔顶D的仰角分别为45°和65°,已知两人之间的距离约为82米,求塔CD的高度,(精确到1米)(参考数据sin65°≈0.91.cos65°≈0.42,tan65°≈2.14,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)【答案】铁塔CD的高度约为56米【解析】【分析】根据题意可得,,,,设,则,由,解方程求解即可.【详解】由题意可知,,,,.在Rt△ACD中,∵,∴,即.设,则在Rt△BCD中,由代入得答:铁塔CD的高度约为56米.【点睛】本题考查了解直角三角形应用,掌握三角形中的边角关系是解题的关键.13.(2022南阳宛城一模)如图,一艘货船以20nmile/h的速度向正南方向航行,在A处测得灯塔B在南偏东方向,航行5h后到达C处,测得灯塔B在北偏东方向,求C处距离灯塔B的距离BC(结果精确到0.1,参考数据:,,,).【答案】65.4nmile【解析】【分析】过点B作,在Rt△CBH和Rt△BAH中,根据三角函数的定义即可计算出C处距离灯塔B的距离BC.【详解】解:如图,过点B作,垂足为H,由题意得,,,,在Rt△CBH中,∵,,∴,,在Rt△BAH中,∵,∴,又∵,∴,所以,∴.答:BC的长约为65.4nmile.【点睛】本题考查的是解直角三角形的应用,正确作出辅助线,把航海中的实际问题转化为解直角三角形的问题是解题的关键.14.(2022河南汝阳一模)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得前方小岛C的俯角为30°,水平飞行20km后到达B处,发现小岛在其后方,测得小岛的俯角为45°.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
【答案】所以飞机飞行的高度为米.【解析】【分析】如图,过作于则设则再证明再列方程,解方程可得答案.【详解】解:如图,过作于则
设则所以飞机飞行的高度为米.【点睛】本题考查的是等腰直角三角形的判定与性质,勾股定理的应用,二次根式的运算,含的直角三角形的性质,熟练的构建直角三角形是解题的关键.15.(2022河南林州一模)如图,小东在教学楼距地面8米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.5米处,若国旗随国歌声冉冉升起,并在国歌播放46秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】国旗匀速上升的速度约为米/秒.【解析】【分析】先根据等腰直角三角形的判定与性质可得米,再利用正切三角函数可得的长,从而可得的长,由此即可得出答案.【详解】解:由题意得:米,是等腰直角三角形,米,在中,(米),米,国旗匀速上升的速度约为(米/秒),答:国旗匀速上升的速度约为米/秒.【点睛】本题考查了解直角三角形的应用等知识点,熟练掌握解直角三角形的方法是解题关键.16.(2022安阳一模)在一次数学活动中,某学生在市田径运动馆观礼台上距离地面6m处A点测得正前方旗杆顶端B点的仰角为45°,旗杆底部C点的俯角为37°.请求出该运动馆内旗杆BC的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】该运动馆内旗杆BC的高度为14m.【解析】【分析】根据正切的概念求出AE,根据等腰直角三角形的性质计算即可.【详解】解:过点A作AE⊥BC于点E,∵AD⊥DC,EC⊥DC,∴四边形ADCE是矩形,∴CE=AD=6m,∵tan∠EAC=,∴AE≈=8(m),∵∠AEB=90°,∠BAE=45°,∴BE=AE=8(m),∴BC=BE+CE=8+6=14(m),答:该运动馆内旗杆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告公司会员积分合同范本
- 2024至2030年中国艺术彩灯行业投资前景及策略咨询研究报告
- 2024至2030年中国立柱式喷头数据监测研究报告
- 美甲店入股合同范本
- 2024至2030年分散蓝297:1号滤饼项目投资价值分析报告
- 2024至2030年中国升华转移烫画数据监测研究报告
- 太保采购合同范本
- 2024年铝棒材项目可行性研究报告
- 2024年中国轻钢别墅构造体市场调查研究报告
- 直播培训合同范本
- 2019新教材人教版生物必修1教材课后习题答案
- 2024年中国白酒行业数字化转型研究报告-36氪-202409
- 《学校主人公:3 校园广播站》教学设计-2024-2025学年五年级上册综合实践活动沪科黔科版
- 外伤急救包扎技术说课课件
- 人教版(2024新版)七年级上册英语全册语法知识点讲义
- 全国青岛版信息技术七年级下册专题一第8课三、《高级统计-数据透视表》教学设计
- 内分泌科品管圈成果汇报提高糖尿病患者健康教育知晓率
- 2024年秋季新人教版七年级数学上册教学课件 第五章 一元一次方程 5.3实际问题与一元一次方程(第4课时)
- 清淡的晚餐(课件)六年级上册劳动北京版
- 妇科内分泌疾病诊断与治疗考核试卷
- 城镇雨污分流项目可行性研究报告
评论
0/150
提交评论