版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE21-四川省眉山市2025届高三数学其次次诊断性考试试题文(含解析)留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用铅笔擦干净后,在选涂其它答案标号.回答非选择题时.将答案写在答题卡上,写在在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则的子集个数为()A. B. C. D.【答案】A【解析】【分析】先由题意求出,然后再求子集个数.【详解】由题意可得:,有两个元素,则其子集个数有个.故选:A.【点睛】本题考查了集合的运算以及集合子集个数的求解,考查运算求解实力,属于基础题.2.已知i为虚数单位,复数,则|z|=()A. B.4 C.5 D.25【答案】C【解析】【分析】先化简复数为的形式,再求复数的模.【详解】依题意,故.故选C.【点睛】本小题主要考查复数的除法运算,考查复数的模的运算,属于基础题.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模,共轭复数的概念都与复数的实部与虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即的形式,再依据题意求解.3.已知平面对量的夹角为,且,则()A.64 B.36 C.8 D.6【答案】D【解析】【分析】依据向量运算的公式,干脆计算出的值.【详解】依题意,故选D.【点睛】本小题主要考查平面对量的运算,属于基础题.4.△ABC中,(a﹣b)(sinA+sinB)=(c﹣b)sinC.其中a,b,c分别为内角A,B,C的对边,则A=()A. B. C. D.【答案】B【解析】【分析】依据正弦定理化简已知条件,求得的值,进而求得的大小.【详解】由正弦定理得,即,即,由于为三角形内角,故.所以选B.【点睛】本小题主要考查利用正弦定理和余弦定理解三角形,考查特别角的三角函数值.5.空气质量指数是一种反映和评价空气质量的方法,指数与空气质量对应如下表所示:0~5051~100101~150151~200201~300300以上空气质量优良轻度污染中度污染重度污染严峻污染如图是某城市2024年12月全月的指数改变统计图.依据统计图推断,下列结论正确的是()A.整体上看,这个月的空气质量越来越差B.整体上看,前半月的空气质量好于后半月的空气质量C.从数据看,前半月的方差大于后半月的方差D.从数据看,前半月的平均值小于后半月的平均值【答案】C【解析】【分析】依据题意可得,AQI指数越高,空气质量越差;数据波动越大,方差就越大,由此逐项推断,即可得出结果.【详解】从整体上看,这个月AQI数据越来越低,故空气质量越来越好;故A,B不正确;从AQI数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C正确;从AQI数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D不正确.故选C.【点睛】本题主要考查样本的均值与方差,熟记方差与均值的意义即可,属于基础题型.6.设函数,则=()A. B. C. D.10【答案】B【解析】【分析】依据分段函数的解析式,分别求出,即可得出结果.【详解】依据题意,函数,,,则;故选B.【点睛】本题主要考查分段函数的求值问题,分别代入求值即可,属于基础题型.7.已知f(x)是定义在R上的奇函数,若x1,x2∈R,则“x1+x2=0”是“f(x1)+f(x2)=0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】【分析】依据函数奇偶性的性质以及充分条件和必要条件的定义进行推断.【详解】函数是奇函数,
若,则,则,即成立,即充分性成立,若,满意是奇函数,当时满意,此时满意,但,即必要性不成立,故“”是“”的充分不必要条件,所以A选项正确.【点睛】本题主要考查充分条件和必要条件的推断,依据函数奇偶性的性质是解决本题的关键.8.已知函数的部分图象如图所示,点在图象上,若,,且,则()A.3 B. C.0 D.【答案】D【解析】【分析】依据条件求出A,ω和φ的值,求出函数的解析式,利用三角函数的对称性进行求解即可.【详解】由条件知函数的周期满意T=2×()=2×2π=4π,即4π,则ω,由五点对应法得ω+φ=0,即φ=0,得φ,则f(x)=Asin(x),则f(0)═Asin()A,得A=3,即f(x)=3sin(x),在()内的对称轴为x,若∈(),,且,则关于x对称,则=2,则f()=3sin()=3sin3sin,故选D.【点睛】本题主要考查三角函数的图象和性质,依据条件先求出函数的解析式,以及利用三角函数的对称性是解决本题的关键.9.若直线x﹣my+m=0与圆(x﹣1)2+y2=1相交,且两个交点位于坐标平面上不同的象限,则m的取值范围是()A.(0,1) B.(0,2) C.(﹣1,0) D.(﹣2,0)【答案】D【解析】【分析】圆都在轴的正半轴和原点,若要两个交点在不同象限,则在第一、四象限,即两交点的纵坐标符号相反,通过联立得到,令其小于0,可得答案.【详解】圆与直线联立,整理得图像有两个交点方程有两个不同的实数根,即得.圆都在轴的正半轴和原点,若要交点在两个象限,则交点纵坐标的符号相反,即一个交点在第一象限,一个交点在第四象限.,解得,故选D项.【点睛】本题考查直线与圆的交点,数形结合的数学思想来解决问题,属于中档题.10.在四面体中,已知,,且平面,则该四面体外接球的表面积是()A. B. C. D.【答案】B【解析】【分析】由题意还原四面体ABCD所在正方体,则体对角线BD即为四面体ABCD外接球的直径,由题中等量关系求半径,进而求出外接球的表面积.【详解】如图所示:由四面体是面(为直角)为等腰直角三角形,侧棱垂直于面的几何体,即四面体的外接球就是棱长为AB=的正方体(如图所示)的外接球,其半径为R==.所以该四面体外接球的表面积是.故选:B.【点睛】本题主要考查简洁几何体、球的表面积等基础学问,考查空间想象、运算求解及推理论证实力,考查化归与转化思想,属于中档题.11.设是抛物线上的动点,是的准线上的动点,直线过且与(为坐标原点)垂直,则到的距离的最小值的取值范围是()A. B. C. D.【答案】A【解析】【分析】先由抛物线的方程得到准线方程,设点的坐标为,得到直线的方程,再设与直线平行的直线方程为,与抛物线方程联立,由判别式为0,得到,最终由点到直线的距离,即可得出结果.【详解】抛物线上准线方程是设点的坐标为.则直线的方程为.设与直线平行的直线方程为.代入抛物线方程可得,由,可得.故与直线平行且与抛物线相切的直线方程为..则到的距离的最小值.故选A.【点睛】本题主要考查直线的方程、抛物线的方程及其几何性质,熟记抛物线的简洁性质,结合直判别式、点到直线距离公式等求解,属于常考题型.12.若函数y=ex﹣e﹣x(x>0)的图象始终在射线y=ax(x>0)的上方,则a的取值范围是()A.(﹣∞,e] B.(﹣∞,2] C.(0,2] D.(0,e]【答案】B【解析】【分析】求得函数的导函数,由此推断出函数在时为递增函数,利用切线的斜率求得的取值范围.【详解】依题意设,这,故函数在时为递增函数,且在时为正数,故单调递增,故,而是直线的斜率,直线过原点,要使函数的图象始终在射线的上方则需.故选B.【点睛】本小题主要考查利用导数求函数的单调区间,考查分析问题的实力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.若,则cos2α=_____.【答案】【解析】【分析】利用二倍角公式和齐次方程,求得的值.【详解】依题意.【点睛】本小题主要考查二倍角公式,考查齐次方程的应用,属于基础题.14.依据下列算法语句,当输入时,输出的最大值为____________.输入,输出【答案】2【解析】【分析】依据题中程序分析出满意的不等式组,然后分析比较满意时输出目标函数的最大值和不满意时输出目标函数的最大值,进而得出答案.【详解】由算法语句知,当,满意不等式组时,则可得,满意的可行域如图阴影部分所示:则可得目标函数经过M点是取得最大值,由联立解得坐标M(1,1),则可得目标函数的最大值为;当,不满意不等式组时,由题意可得可得,则经过比较目标函数的最大值为.故答案为:2.【点睛】本题考查基本算法中的条件语句,线性规划中目标函数的最值问题;考查逻辑推理实力、运算求解实力,属于一般难度的题.15.是R上的偶函数,且当时,,则不等式的解集为___.【答案】【解析】【分析】依据条件可知,且上单调递增,依据偶函数的性质,转化为,这样比较与1的大小关系.【详解】当时,是单调递增函数,且,即解得:故解集是.【点睛】本题考查了依据函数的奇偶性和单调性解抽象不等式,属于简洁题型,意在考查转化与化归的实力,解抽象不等式时,假如函数是偶函数,时,转化为,再依据的单调性,比较和的大小.16.设,为平面外两条直线,其在平面内的射影分别是两条直线和.给出下列个命题:①与平行或重合,②,③,其中全部假命题的序号是_____________.【答案】②③【解析】【分析】由线与线、线与面的位置关系以及利用反例法一一推理推断即可得出答案.【详解】对于①:由题设直线,与平面不垂直,且可设直线,确定的平面为.若,则与重合(为,的交线);若与不垂直,则易知与,与确定的平面相互平行,从而,故真命题;以下举反例说明命题②③不真.在如图所示的正方体中,对于②:取平面为,,分别为,,,分别为,,满意,但是不满意,故命题为假;对于③:取平面为,,分别为,,,分别为,,满意,但是不满意,故命题为假.故答案为:②③.【点睛】本题主要考查直线与直线、直线与平面的位置关系等基础学问,考查空间想象、逻辑推理等实力,考查化归与转化思想.属于一般难度的题.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必需作答.第22、23题为选考题,考生依据要求作答.(一)必考题:共60分.17.若数列{an}的前n项和为Sn,且.(1)求Sn;(2)记数列的前n项和为Tn,证明:1≤Tn<2.【答案】(1);(2)见解析【解析】【分析】(1)利用迭代法证得是等比数列,由此求得的表达式,进而求得的表达式.(2)依据(1)求得的的表达式.利用求得的表达式,再求得的表达式,由此证得不等式成立.【详解】由题意有,所以数列是等比数列.又,所以,数列是首项为,公比为的等比数列.所以,所以由知,时,.两式相减得,时,也满意,所以数列的通项公式为.当时,当时,明显且所以【点睛】本小题主要考查递推数列求通项公式,考查数列求和的方法,属于中档题.18.某花圃为提高某品种花苗质量,开展技术创新活动,在,试验地分别用甲、乙方法培育该品种花苗.为观测其生长状况,分别在,试验地随机抽选各株,对每株进行综合评分(评分的凹凸反映花苗品质的凹凸),将每株所得的综合评分制成如图所示的频率分布直方图:(1)求图中的值,并求综合评分的中位数;(2)记综合评分为及以上的花苗为优质花苗.填写下面的列联表,并推断是否有的把握认为优质花苗与培育方法有关.优质花苗非优质花苗合计甲培育法乙培育法合计附:下面的临界值表仅供参考.(参考公式:,其中.)【答案】(1),;(2)是,详见解析【解析】【分析】(1)由频率分布直方图中小长方形的面积和为1可以求得;由中位数两侧频率均为0.5可求出中位数;(2)由题意先补填列联表,然后由列联表求,再进行比较推断.【详解】解:(1)由,解得.令得分中位数为,由,解得.故综合评分的中位数为.(2)列联表如下表所示:优质花苗非优质花苗合计甲培育法乙培育法合计可得.所以,有的把握认为优质花苗与培育方法有关系.【点睛】本题考查频率分布直方图,相关统计量,列联表,相关性等基础学问;考查数据处理实力,运算求解实力,应用意识和创新意识,属于一般难度的题.19.如图1,在边长为的正方形中,点,分别是,的中点,点在上,且.将,分别沿,折叠,使,点重合于点,如图2所示.图1图2(1)求证:平面;(2)求三棱锥的体积.【答案】(1)证明见解析(2)【解析】【分析】(1)结合翻折前后的变量与不变量的关系,利用线面平行的判定定理干脆证明即可;(2)利用平面图形翻折前后的变量与不变量证明面PEF,由题中等量关系分别求出PM和,然后由进行求解答案.【详解】解:(1)在图1中,连结交于,交于,则.图1在图2中,连结交于,连结.在中,有,,图2所以.又因为面,面,故平面.(2)依据题意,图2中的,,即图1中的,,所以,.又,所以面,即面.在中,,,,所以.【点睛】本题主要考查直线和平面平行的判定、三棱锥体积的求法等基础学问,考查空间想象、逻辑推理等实力,考查化归与转化等数学思想,属于一般难度的题.20.已知椭圆的右焦点为,过点F且垂直于x轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C的方程;(2)设A,B为椭圆C上的两动点,M为线段AB的中点,直线AB,OM(O为坐标原点)的斜率都存在且分别记为k1,k2,试问k1k2的值是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1);(2)为定值,此定值为【解析】分析】(1)依据已知条件列方程组,解方程组求得的值,进而求得椭圆方程.(2)利用点差法求得为定值.【详解】由题意得,解得.所以椭圆的方程为:设的坐标分别为,点的坐标为,即由已知,所以,即则,于是.所以为定值,此定值为【点睛】本小题主要考查椭圆标准方程的求法,考查利用点差法求解有关中点弦的问题,属于中档题.21.已知函数.(1)当时,求在处的切线方程;(2)若,不等式恒成立,求的取值范围.【答案】(1)(2)【解析】【分析】(1)对函数求导,求,,然后利用点斜式方程可求得答案;(2)对函数求导,构造函数推断其在上单调递增,分类探讨时:推断函数单调递增函数,然后再由求得的取值范围;时,使得,推断在上函数单调递减,上单调递增,求得函数最小值然后利用和进行适当地转化即可求出参数的取值范围,最终总结探讨结果得出的取值范围.【详解】解:(1)当时,,,则,,由点斜式方程可得:化简得:,即切线方程为.(2)由,得,令,则.所以在上单调递增,且.①当时,,函数单调递增,由于恒成立,则有,即,所以满意条件;②当时,则存在,使得,当时,,则,单调递减;当时,,则,单调递增.所以,又满意,即,所以,则,即,得.又,令,则,可知,当时,,则单调递减,所以,此时满意条件.综上所述,的取值范围是.【点睛】本题考查了函数与导数、不等式等基本学问.考查函数与方程、分类与整合、化归与转化等数学思想以及推理论证、运算求解等数学实力,属于难题.(二)选考题:共10分.请考生在第22、23题中任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州大学《普通微生物学实验》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《钢结构混凝土设计》2023-2024学年第一学期期末试卷
- 2025福建省建筑安全员A证考试题库
- 贵阳信息科技学院《生药学Ⅱ》2023-2024学年第一学期期末试卷
- 2025湖北省建筑安全员-C证考试题库
- 2025年山西建筑安全员A证考试题库
- 2025四川建筑安全员考试题库附答案
- 广州幼儿师范高等专科学校《人文地理学理论与进展》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《影视制作实务》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《岩土工程测试技术》2023-2024学年第一学期期末试卷
- 现代学徒制课题:数字化转型背景下新型师徒关系构建研究(附:研究思路模板、可修改技术路线图)
- 9.2溶解度(第2课时)-2024-2025学年九年级化学人教版(2024)下册
- 安全知识考试题库500题(含答案)
- 2024-2025学年上学期南京小学数学六年级期末模拟试卷
- 安徽省合肥市包河区2023-2024学年三年级上学期语文期末试卷
- 河北省保定市定兴县2023-2024学年一年级上学期期末调研数学试题(含答案)
- 2024版食源性疾病培训完整课件
- 2025年中国蛋糕行业市场规模及发展前景研究报告(智研咨询发布)
- 护理组长年底述职报告
- 护理不良事件分析 课件
- 巨量引擎合同范本
评论
0/150
提交评论