版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年深圳市重点中学数学九上开学考试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥ C.0<k< D.≤k≤22、(4分)如图所示,在矩形中,,,矩形内部有一动点满足,则点到,两点的距离之和的最小值为().A. B. C. D.3、(4分)五一假期小明一家自驾去距家360km的某地游玩,全程的前一部分为高速公路,后一部分为乡村公路.若小汽车在高速公路和乡村公路上分别以某一速度匀速行驶,行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.小汽车在乡村公路上的行驶速度为60km/hB.小汽车在高速公路上的行驶速度为120km/hC.乡村公路总长为90kmD.小明家在出发后5.5h到达目的地4、(4分)-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为()A.6 B.7 C.8 D.95、(4分)设直角三角形的两条直角边分别为a和b,斜边长为c,已知,,则()A.3 B.4 C.5 D.86、(4分)已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为,,则与大小关系为()A. B.C. D.不能确定7、(4分)下列实数中,能够满足不等式的正整数是()A.-2 B.3 C.4 D.28、(4分)如图,直线y=x+b与直线y=kx+7交于点P(3,5),通过观察图象我们可以得到关于x的不等式x+b>kx+7的解集为x>3,这一求解过程主要体现的数学思想是()A.分类讨论 B.类比 C.数形结合 D.公理化二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若分式的值为0,则x=_____.10、(4分)如图矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=4,则图中阴影部分的面积为_____.11、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.12、(4分)如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.13、(4分)将一次函数的图象向上平移个单位得到图象的函数关系式为________________.三、解答题(本大题共5个小题,共48分)14、(12分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准.若某户居民每月应缴水费y(元)与用水量x(吨)的函数图象如图所示,(1)分别写出x≤5和x>5的函数解析式;(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准;(3)若某户居民六月交水费31元,则用水多少吨?15、(8分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.16、(8分)为宣传节约用水,小强随机调查了某小区部分家庭3月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭3月份用水量的众数、中位数和平均数;(3)若该小区有800户居民,请你估计这个小区3月份的总用水量是多少吨?17、(10分)计算:÷+×﹣.18、(10分)小芳和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小芳开始跑步中途改为步行.达到图书馆恰好用,小东骑自行车以的速度直接回家,两个离家的路程与各自离开出发地的时间之间的函数图象如图所示.(1)家与图书馆之间的路程为,小芳步行的速度为;(2)求小东离家的路程关于的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直角三角形两边长为5和12,则此直角三角形斜边上的中线的长是_______.20、(4分)某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.21、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________22、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________23、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,有一个直角三角形纸片,两直角边cm,cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?25、(10分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.(1)求证:△ADF≌△DCE;(2)求GH的长.26、(12分)某乳品公司向某地运输一批牛奶,若由铁路运输,每千克牛奶只需运费0.60元;若由公路运输,不仅每千克牛奶需运费0.30元,而且还需其他费用600元.设该公司运输这批牛奶为x千克,选择铁路运输时所需费用为y1元;选择公路运输时所需费用为y2元.(1)请分别写出y1,y2与x之间的关系式;(2)公司在什么情况下选择铁路运输比较合算?什么情况下选择公路运输比较合算?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.【详解】解:直线与正方形有公共点,直线在过点和点两直线之间之间,如图,可知,,当直线过点时,代入可得,解得,当直线过点时,代入可得,解得,的取值范围为:,故选:.本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.2、D【解析】
首先由,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】解:设△ABP中AB边上的高是h.∵,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为.故选D.本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.3、A【解析】
根据一次函数图象的性质和“路程=速度×时间”的关系来分析计算即可.【详解】解:小汽车在乡村公路上的行驶速度为:(270﹣180)÷(3.5﹣2)=60km/h,故选项A正确,小汽车在高速公路上的行驶速度为:180÷2=90km/h,故选项B错误,乡村公路总长为:360﹣180=180km,故选项C错误,小明家在出发后:2+(360﹣180)÷60=5h到达目的地,故选项D错误,故选:A.一次函数在实际生活中的应用是本题的考点,根据题意读懂图形及熟练掌握“路程=速度×时间”的关系是解题的关键.4、A【解析】
根据题意得(n-2)•180=720,解得:n=6,故选A.5、B【解析】
根据勾股定理,直接计算即可得解.【详解】根据勾股定理,得故答案为B.此题主要考查勾股定理的运用,熟练掌握,即可解题.6、A【解析】
通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈0.1.∵2.33>0.1,∴.故选A.本题考查了折线统计图、平均数、方差的计算方法和各个统计量的所反映数据的特征,掌握平均数、方差的计算公式是正确解答的前提.7、D【解析】
将各项代入,满足条件的即可.【详解】A选项,-2不是正整数,不符合题意;B选项,,不符合题意;C选项,,不符合题意;D选项,,符合题意;故选:D.此题主要考查不等式的正整数解,熟练掌握,即可解题.8、C【解析】
通过观察图象得出结论,这一求解过程主要体现的数学思想是数形结合.【详解】∵不等式x+b>kx+7,就是确定直线y=kx+b在直线y=kx+7上方部分所有的点的横坐标所构成的集合,∴这一求解过程主要体现的数学思想是数形结合.故选C.本题考查了一次函数与一元一次不等式,解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
直接利用分式的值为零,则分子为零分母不为零,进而得出答案.【详解】∵分式的值为0,∴x2-1=0,(x+1)(x-3)≠0,解得:x=1.故答案为1.此题主要考查了分式的值为零的条件,正确把握定义是解题关键.10、1.【解析】
首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BCD的面积.【详解】∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,∵,∴△AOE≌△COF(ASA),∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△AOE+S△BOF+S△COD=S△BCD;∵S△BCD=BC•CD=1,∴S阴影=1.故答案为1.本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.11、x<-2【解析】【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.所以,的解集为x<-2.故答案为x<-2【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.12、(8,33)【解析】
根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.13、.【解析】
根据直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m求解.【详解】解:把一次函数的图象向上平移3个单位后,得到的图象对应的函数关系式为.故答案为:.本题考查了一次函数图象与几何变换:直线y=kx+b向上平移m(m>0)个单位所得直线解析式为y=kx+b+m,直线y=kx+b向下平移m(m>0)个单位所得直线解析式为y=kx+b-m.三、解答题(本大题共5个小题,共48分)14、(1)(x≤5),(x>5);(2)见解析;(3)9吨.【解析】【分析】(1)用待定系数法可求解析式;(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.(3)把y=31代入(x>5)即可.x>5自来水公司的收费标准是每吨4元;【详解】解:(1)(x≤5),(x>5)(2)由(1)解析式得出:x≤5自来水公司的收费标准是每吨3元.x>5自来水公司的收费标准是每吨4元;(3)若某户居民六月交水费31元,设用水x吨,,解得:x=9(吨)【点睛】本题考核知识点:一次函数的应用.解题关键点:结合一次函数的图象解决问题.15、(1)(2)P的坐标为或【解析】
(1)利用点A在上求a,进而代入反比例函数求k即可;(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.【详解】(1)把点代入,得,∴把代入反比例函数,∴;∴反比例函数的表达式为;(2)∵一次函数的图象与x轴交于点C,∴,设,∴,∴,∴或,∴P的坐标为或.本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.16、(1)20户;(2)众数是4吨,位数是6吨,均数是4.5吨;(3)估计这个小区3月份的总用水量是3600吨.【解析】分析:(1)、将各组的人数进行相加得出答案;(2)、根据众数、中位数和平均数的计算法则进行计算即可;(3)、利用平均数乘以800得出答案.详解:(1)、小明一共调查的户数是:1+1+3+6+4+2+2+1=20(户);(2)、在这组数据中,4出现了6次,出现的次数最多,∴这组数据的众数是4吨;∵将这组数据按从小到大的顺序排列,其中出于中间的两个数都是6,有=6,∴这组数据的中位数是6吨;这组数据的平均数是:=4.5(吨);(3)据题意得:800×4.5=3600(吨),答:估计这个小区3月份的总用水量是3600吨.点睛:本题主要考查的是众数、平均数、中位数的计算以及利用样本推算总量,属于基础题型.理解计算法则是解题的关键.17、.【解析】
先进行二次根式化简和乘除运算,然后再进行加减即可.【详解】解:原式=4﹣.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.【详解】(1)由图象可得:家与图书馆之间的路程为4000米,小芳步行的速度为(2)∵小东骑自行车以的速度直接回家∴他离家的路程自变量的范围为(3)由图像可知,两人相遇是在小玲改变速度之前解得两人相遇时间第8分钟.本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、6或6.5【解析】分类讨论,(1)若斜边为12,则直角三角形斜边上的中线的长是6;(2)若12是直角边,则斜边为13,则直角三角形斜边上的中线的长是6.5;综上述,直角三角形斜边上的中线的长是6或6.5.20、y=-x-1(答案不唯一).【解析】
根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.【详解】解:设一次函数解析式为y=kx+b,∵一次函数y随着x的增大而减小,
∴k<1.
又∵直线过点(1,-2),
∴解析式可以为:y=-x-1等.
故答案为:y=-x-1(答案不唯一).此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。21、20或22【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22本题主要考查等腰直角三角形的性质,关键在于确定宽的长.22、【解析】
根据∆>0列式求解即可.【详解】由题意得4-8m>0,∴.故答案为:.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.23、【解析】
利用勾股定理可用m表示出OB的长,根据平方的非负数性质即可得答案.【详解】∵点B的坐标是(m,m-4),∴OB==,∵(m-2)2≥0,∴2(m-2)2+8≥8,∴的最小值为=,即OB的最小值为,故答案为:本题考查勾股定理的应用及平方的非负数性质,熟练掌握平方的非负数性质是解题关键.二、解答题(本大题共3个小题,共30分)24、CD的长为2cm.【解析】
首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8-x,在△BDE中,利用勾股定理列方程求解即可.【详解】解:在Rt三角形中,由勾股定理可知:由折叠的性质可知:DC=DE,AC=AE,∠DEA=∠C.
∴BE=AB-AE=10-6=4,∠DEB=90°.
设DC=x,则BD=8-x.
在Rt△BDE中,由勾股定理得:BE1+ED1=BD1,即41+x1=(8-x)1.
解得:x=2.
∴CD=2.本题主要考查的是翻折变换、勾股定理的应用,利用翻折的性质和勾股定理表示出△DBE的三边长是解题的关键.25、(1)详见解析;(2)【解析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 刚性阻燃线管暗配施工方案
- 消防工程维保计划书
- 小学语文教研计划 小学教研计划总结例文
- 办公室每月工作计划范文
- 劳技教学工作计划
- 办公室文员试用期计划总结
- 城市禁毒主题宣传月工作计划书
- 教师关爱留守儿童措施初中教师工作计划
- 2024年计划生育工作计划报告
- 一年级2024年上学期班主任工作计划
- 《企业文化宣讲》课件
- 电影《白日梦想家》课件
- 无人机应用与基础操控入门课件
- 人教版4年级上册音乐测试(含答案)
- 大学写作(山东联盟)智慧树知到期末考试答案2024年
- 给排水系统调试方案94503
- SSS-I双立环脉动高梯度磁选机使用说明书
- 钢管材料对照
- XX音乐厅舞台灯光调试报告
- 民用机场工程造价控制的难点浅析
- 《分数乘法三》说课稿
评论
0/150
提交评论