版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年上海市徐汇区数学九年级第一学期开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在中,,的垂直平分线交于点,交于点,连接,,,,添加一个条件,无法判定四边形为正方形的是()A. B. C. D.2、(4分)要使式子有意义,则的取值范围是()A. B. C. D.3、(4分)下列各式成立的是()A. B. C. D.4、(4分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)11.21.5节水户数651520A.1 B.1.1 C.1.13 D.1.25、(4分)在平面直角坐标中,点P(1,﹣3)关于x轴的对称点坐标是()A.(1,﹣3) B.(﹣1,3) C.(﹣1,﹣3) D.(1,3)6、(4分)如图,小明同学用自制的直角三角形纸板测量树的高度,他调整自己的位置,设法使斜边保持水平,并且边与点在同一直线上.已知纸板的两条直角边,,测得边离地面的高度,,则树高是()A.4米 B.4.5米 C.5米 D.5.5米7、(4分)若m=-4,则()A.1.5<m<2 B.2<m<2.5 C.2.5<m<3 D.3<m<3.58、(4分)王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S甲2=12,S乙2=51,则下列说法正确的是()A.甲、乙两位同学的成绩一样稳定B.乙同学的成绩更稳定C.甲同学的成绩更稳定D.不能确定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.10、(4分)花粉的质量很小.一粒某种植物花粉的质量约为0.000037毫克,那么0.000037毫克可用科学记数法表示为________毫克.11、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.12、(4分)如图,在矩形ABCD中,AB=9,点E,F分别在BC,CD上,将△ABE沿AB折叠,使点B落在AC上的点B'处,又将△CEF沿EF折叠,使点C落在直线EB'与AD的交点C'13、(4分)如图,D是△ABC中AC边上一点,连接BD,将△BDC沿BD翻折得△BDE,BE交AC于点F,若,△AEF的面积是1,则△BFC的面积为_______三、解答题(本大题共5个小题,共48分)14、(12分)已知:在中,对角线、交于点,过点的直线交于点,交于点.求证:,.15、(8分)(1)问题发现.如图1,和均为等边三角形,点、、均在同一直线上,连接.①求证:.②求的度数.③线段、之间的数量关系为__________.(2)拓展探究.如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.①请判断的度数为____________.②线段、、之间的数量关系为________.(直接写出结论,不需证明)16、(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.17、(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.18、(10分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.(1)求证:;(2)连接,,求证:四边形是平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知等边三角形的边长是2,则这个三角形的面积是_____.(保留准确值)20、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.21、(4分)在平行四边形ABCD中,若∠A+∠C=140°,则∠B=.22、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.23、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.二、解答题(本大题共3个小题,共30分)24、(8分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.25、(10分)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在中,,,点、分别在边、上,,连接、,点、、分别为、、的中点,且连接、.观察猜想(1)线段与“等垂线段”(填“是”或“不是”)猜想论证(2)绕点按逆时针方向旋转到图2所示的位置,连接,,试判断与是否为“等垂线段”,并说明理由.拓展延伸(3)把绕点在平面内自由旋转,若,,请直接写出与的积的最大值.26、(12分)在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【详解】解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形;
当BC=AC时,
∵∠ACB=90°,
则∠A=45°时,菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故选项A正确,但不符合题意;
当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;
当BD=DF时,BC=EF,对角线相等的菱形是正方形,得菱形BECF是正方形,故选项C正确,但不符合题意;
当AC=BF时,AC=BF=CE,∠A=∠CEA=∠FBA,由菱形的对角线平分对角和直角三角形的两锐角互余得:∠ABC=30°,即∠FBE=60°,所以无法得出菱形BECF是正方形,故选项D错误,符合题意.
故选D.本题考查菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的判定是解题关键.2、D【解析】
根据二次根式被开方数必须是非负数的条件,要使在有意义,必须.
故选D.3、D【解析】
直接利用二次根式的性质分别化简得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选:D.此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.4、C【解析】
根据加权平均数的公式进行计算即可得.【详解】=1.13(吨),所以这100户平均节约用水的吨数为1.13吨,故选C.本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解题的关键.5、D【解析】∵点P(m,n)关于x轴对称点的坐标P′(m,−n),∴点P(1,−3)关于x轴对称的点的坐标为(1,3).故选D.6、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。7、B【解析】
通过62<37<72,6.52=42.25,判断出的范围即可【详解】∵62<37<72,6.52=42.25,∴6<<6.5,则2<-4<2.5,故2<m<2.5,故选B熟练掌握二次根式的估算是解决本题的关键,难度一般8、C【解析】分析:先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.详解:∵S2甲=12、S2乙=51,∴S2甲<S2乙,∴甲比乙的成绩稳定;故选C.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(本大题共5个小题,每小题4分,共20分)9、2<a<.【解析】分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,∴,解得2<a<.故答案是:2<a<.点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.10、【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000037毫克可用科学记数法表示为3.7×10-5毫克.故答案为:.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、3或【解析】
分两种情况讨论即可:①BA=BD,②DA=DB.【详解】解:①如图:当AD成为等腰△BAD的底时,BA=BD,∵∠BAC=90°,∠B=30°,AC=3,∴BC=2x3=6,AB=3,∴BD=BA=3;②如图:当AB成为等腰△DAB的底边时,DA=DB,点D在AB的中垂线与斜边BC的交点处,∴∠DAB=∠B=30°,∴∠ADC=∠B+∠DAB=60°,∵∠C=90°-∠B=60°,∴△ADC为等边三角形,∴BD=AD=3,故答案为3或3.本题考查了等腰三角形的性质及线段垂直平分线的性质,关键是灵活运用这些性质.12、3【解析】
首先连接CC',可以得到连接CC'是∠EC'D的平分线,所以CB'=CD,又AB'=AB,所以【详解】解:如下图所示,连接CC'∵将△ABE沿AB折叠,使点B落在AC上的点B'处,又将△CEF沿EF折叠,使点C落在直线EB'与AD∴EC'∵∠2=∠3∴∠1=∠3在△CC'B'和△∠D=∠C∴△CC'B'≅∴CB又∵AB∴AB∴B'为对角线AC的中点即AC=2AB=18∴∠ACB=30°则∠BAC=60°,∠ACC'=∠DCC∴∠DC'∴∠DC'F=∠FC'C=30°∴'∵DF+CF=CD=AB=9∴DF=9故答案为3.本题考查了折叠问题和矩形的性质,注意折叠前面的两个图形是两个全等形.13、2.5【解析】
由,可得,由折叠可知,可得,由可得,则,又,可得,即可求得,然后求得.【详解】解:∵,∴,由折叠可知,∴,∴,∵,∴,∴,∵,∴,解得:,∴;故答案为2.5.本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题的关键是由线段的关系得到面积的关系.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】
首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.【详解】证明:∵四边形ABCD为平行四边形,且对角线AC和BD交于点O,∴,,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴△AOE△COF(ASA),∴OE=OF,AE=CF.本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.15、(1)①详见解析;②60°;③;(2)①90°;②【解析】
(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.【详解】解:(1)①证明:∵和均为等边三角形,∴,,又∵,∴,∴.②∵为等边三角形,∴.∵点、、在同一直线上,∴,又∵,∴,∴.③,∴.故填:;(2)①∵和均为等腰直角三角形,∴,,又∵,∴,∴,在和中,,∴,∴.∵点、、在同一直线上,∴,∴.②∵,∴.∵,,∴.又∵,∴,∴.故填:①90°;②.本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.16、(1)46(2)见解析(3)①乙1.6,判断见解析②乙,理由见解析【解析】
解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,乙=30÷5=6,所以答案为:4,6;(2)如图所示:(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.17、(1)详见解析;(1)10+1.【解析】
(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(1)四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.【详解】(1)∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形;(1)∵四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,由勾股定理得CD=,∵D是BC的中点,∴BC=1CD=4,在△ABC中,∠ACB=90°,由勾股定理得AB=,∵D是BC的中点,DE⊥BC,∴EB=EC=4,∴四边形ACEB的周长=AC+CE+EB+BA=10+1.本题考查了平行四边形的判定与性质,垂直平分线的性质定理,勾股定理,注意寻找求AB和EB的长的方法和途径是解题的关键.18、(1)证明见解析;(2)证明见解析.【解析】
(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接、,由,得到,又,所以四边形是平行四边形.【详解】(1)四边形是平行四边形,,..在与中,,;(2)如图,连接、,由(1)可知,,,四边形是平行四边形.本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
解:如图,过点A作AD⊥BC于点D,
∵等边三角形的边长是2,
∴BD=BC=×2=1,在Rt△ABD中,AD==所以,三角形的面积=×2×=故答案为:.本题考查等边三角形的性质,比较简单,作出图形求出等边三角形的高线的长度是解题的关键.20、【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.21、110°【解析】试题解析:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.考点:平行四边形的性质.22、1【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.【详解】解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.23、2【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1);(2)40千米/小时.【解析】
(1)甲车行驶过程中y与x之间的函数解析式两种,即从A地到B地是正比例函数,返回时是一次函数,自变量的取值范围分别为(0<x≤4)和(4<x≤7),
(2)求出乙车的y与x的关系式,再与甲车返回时的关系式组成方程组解出即可.【详解】解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:
300=4k,解得:k=75,
∴y=75x
(0<x≤4)
设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:
,解得:k=-100,b=700,
∴y=-100x+700
(4<x≤7),
答:甲车行驶过程中y与x之间的函数解析式为:,
(2)设乙车速度为m千米/小时,依据两车行驶5相遇,在甲车返回时相遇,即甲乙两车离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务员的月工作计划(6篇)
- 2024年新修订:股权转让合同的细节变更
- 2024年招投标标准合同
- 2024年教育项目研发保密合同
- 2024年新媒体广告发布与分成合同
- 2024年新修订版:代驾服务提供商合同
- 《我国滑雪指导员人力资源开发与管理的研究》
- 《3D分级钴基异质结的构筑及其可见光催化降解污染物机制研究》
- 智能助理在工作和生活中的作用
- 红光治疗宫颈炎
- 两癌知识科普课件
- 食用菌现代高效农业示范园区建设项目建议书
- 东营港加油、LNG加气站工程环评报告表
- 2024年日历(打印版每月一张)
- 车用动力电池回收利用 管理规范 第2部分:回收服务网点征求意见稿编制说明
- 新剑桥少儿英语第六册全册配套文本
- 科学预测方案
- 职业生涯规划网络与新媒体专业
- T-WAPIA 052.2-2023 无线局域网设备技术规范 第2部分:终端
- 市政管道开槽施工-市政排水管道的施工
- 人工智能在教育行业中的应用与管理
评论
0/150
提交评论