




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Mindthe
AIDivide
ShapingaGlobalPerspective
ontheFutureofWork
MindtheAIDivide:ShapingaGlobalPerspective
ontheFutureofWork
Copyright©2024UnitedNations
Allrightsreservedworldwide.
Nopartofthispublicationmay,forcommercialpurposes,bereproducedortransmitted
inanyformorbyanymeans,electronicormechanical,includingphotocopy,recordingor
anyinformationstorageandretrievalsystemnowknownortobeinvented,withoutwritten
permissionbythepublisher.
RequeststoreproduceexcerptsortophotocopyshouldbeaddressedtotheCopyright
ClearanceCenterat.
Allotherqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedto:
UnitedNationsPublications,405East42ndStreet,S-11FW001,NewYork,NY10017,United
StatesofAmerica.Email:permissions@.Website:.
Thedesignationsemployedandthepresentationofthematerialinthispublicationdonot
implytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnited
Nationsconcerningthelegalstatusofanycountry.
PDFISBN:9789211066524
Foreword
TheunevenadoptionofArtificialIntelligence(AI)isacriticalissuethatgoesbeyondeconomic
growth.Itimpactsglobalequity,fairnessandthesocialcontractthatisattheheartofsocialjustice.
Disparitiesinaccesstorobustinfrastructure,advancedtechnology,qualityeducationandtraining
aredeepeningexistinginequalities.AstheglobaleconomyincreasinglyshiftstowardsAI-driven
productionandinnovation,lessdevelopedcountriesriskbeingleftfurtherbehind,exacerbating
economicandsocialdivides.Withouttargetedandconcertedeffortstobridgethisdigitaldivide,
AI’spotentialtofostersustainabledevelopmentandalleviatepovertywillremainunrealized,leaving
significantportionsoftheglobalpopulationdisadvantagedintherapidlyevolvingtechnological
landscape.
DuringtheconsultationsheldbytheSecretary-General’sHigh-levelAdvisoryBodyonArtificial
Intelligence,ithasbecomeclearthattheworldofworkisattheheartoftheadoptionofAI.Itis
thuscriticaltounderstandthepotentialforAItoaffectlabourdemandandtransformoccupations.
Itisattheworkplacewherethepotentialforproductivitygainsandimprovedworkingconditions
forthebenefitofworkers,theirfamilies,andsocietiesatlarge,canberealized.Butsuchbenefits
willnothappenontheirown;theywillonlybeachievediftherightconditionsareinplace,including
theavailabilityofdigitalinfrastructureandskills,butalsoacultureofsocialdialoguethatfostersa
positiveintegrationoftechnology.
PromotinginclusivegrowthrequiresproactivestrategiestosupportAIdevelopmentincountrieson
thewrongsideoftheAIdivide.Thisinvolvesenhancingdigitalinfrastructure,promotingtechnology
transfer,buildingAIskills,andensuringthatalljobsalongtheAIvaluechainareofgoodqualityand
improvethelivesofworkingpeople.ByprioritizinginternationalcollaborationinAIcapacitybuilding,
wecancreateamoreequitableandresilientAIecosystem,unlockingopportunitiesforshared
prosperityandhumanadvancementworldwide.
WelookforwardtocontinuingourcollaborativeeffortstoshapetheglobalgovernanceofAI,uphold
humandignityandlaborstandards,andexpandeconomicopportunityforall.
AmandeepSinghGillGilbertF.Houngbo
UnitedNationsSecretary-General’s
EnvoyonTechnology
Director-GeneraloftheInternational
LabourOrganization
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|3
Contents
Foreword
3
Section1.Introduction
5
Section2.Unevenground:UnderstandingAI’sroleinreshapinglabourmarkets
6
Ensuringjobqualityunderaugmentation
10
Section3.TheAIvaluechainandthedemandforskills
11
AdaptingskillsfortheAIlandscape
14
Section4.Movingforward:Strengtheninginternationalcooperation,building
nationalcapacity,andaddressingAIintheworldofwork
17
StrengthenedinternationalcooperationonAI
17
BuildingnationalAIcapacity
18
TowardsapositiveintegrationofAIintheworldofwork
18
Acknowledgments
20
References
21
4|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Section1
Introduction
TherapidadvancementofArtificialIntelligence
(AI)promiseswidespreadtransformations
foroursocieties,oureconomiesandthe
worldofwork.Whilesuchadvancesoffer
tremendousopportunitiesforinnovationand
productivity,theunevenratesofinvestment,
adoptionanduseamongcountriesrisks
exacerbatingthealreadywidedisparities
inincomeandqualityoflife.Thereisa
pronounced“AIdivide”emerging,wherehigh
incomenationsdisproportionatelybenefitfrom
AIadvancements,whilelow-andmedium-
incomecountries,particularlyinAfrica,lag
behind.Worse,thisdividewillgrowunless
concertedactionistakentofosterinternational
cooperationinsupportofdevelopingcountries.
Theabsenceofsuchpolicieswillnotonly
widenglobalinequalities,butriskssquandering
thepotentialofAItoserveasacatalystfor
widespreadsocialandeconomicprogress.
WhileAIwillpotentiallyaffectmanyaspects
ofourdailylives,itsimpactislikelytobemost
acuteintheworkplace.Wealthiercountries
aremoreexposedtothepotentialautomating
effectsofAIintheworldofwork,buttheyare
alsobetterpositionedtorealizetheproductivity
gainsitoffers.Developingcountries,onthe
otherhand,maybetemporarilybuffered
becauseofalackofdigitalinfrastructure,but
thisbufferrisksturningintoabottleneckfor
productivitygrowth,andmoreimportantly,for
thefutureprosperityoftheirpopulations.
Ensuringinclusivegrowthinthefuture
requiresproactivemeasurestoempowerAI
developmentincountriesatthedisadvantaged
receivingendofthedigitaldivide,fostering
digitalinfrastructureaswellasAIskills,and
promotingtechnologytransferandabsorption.
Suchdigitalskillscanalsoenableamore
positiveintegrationofAIintheworkplace,
particularlywhencombinedwithsocial
dialogue.Socialdialogueonthedesign,
implementationanduseoftechnologyatthe
workplace,aswellasinthedevelopmentof
regulationsessentialforensuringrespect
ofworkers’fundamentalrights,isneeded.
Indeed,whethertheintegrationoftechnology
intoworkprocessesspursproductivitygrowth
orimprovesworkingconditionsinsupport
ofsocialjusticedependsinlargepartonthe
strengthofsuchcollaborationanddialogue.
Sovereigneffortsplayacrucialroleinshaping
AIcapacitybuildingascountriesassert
theirautonomyindevelopingstrategies
andpoliciestailoredtotheiruniquesocio-
economiccontexts.Localprocesses,driven
byculturalvalues,politicaleconomies,and
societalneeds,cansignificantlyimpactthe
effectivenessandsustainabilityofAIinitiatives.
However,disparitiesinresourcesandexpertise
remainandcanhinderAIdevelopmentinthe
GlobalSouth.Inresponse,thereisagrowing
recognitionoftheresponsibilityofdeveloped
countriestosupportcapacitybuildingefforts
inresourcescarcecountries.Asoutlined
intherecentInterimReportoftheUnited
NationsSecretary-General’sHigh-levelAdvisory
BodyonAI1,thisrecognitionextendsbeyond
financialaidtoincludeknowledgesharing,
skillsdevelopment,technologytransfer,aswell
ascollaborativeresearchanddevelopment
partnerships.Byleveragingtheiradvanced
AIecosystems,theGlobalNorthcanhelp
bridgethegapandempowercountriesinthe
GlobalSouthtoharnessAIforsustainable
development,whilerespectingtheirsovereignty
andpromotinglocalinnovationecosystems.By
prioritizingglobalcollaborationforAIcapacity
building,theinternationalcommunitycan
nurtureamoreequitableandresilientglobalAI
ecosystem,unlockingopportunitiesforshared
prosperityandhumanflourishingacrossthe
world.
1/ai-advisory-body
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|5
Section2
Unevenground
UnderstandingAI’sroleinreshapinglabourmarkets
Researchonthepossibleeffectsofgenerative
AIonemploymentacrosstheworldsuggests
thatwhiletherearelikelytobeimportant
transformativeeffectsonsomeoccupations,
impactsintermsofjoblossesaremuchless
thanheadlinefiguresappearinginthemedia,
andcertainlydonotpointtoajoblessfuture.
Accordingtoananalysisundertakenbythe
InternationalLabourOrganizationonthe
potentialexposureoftaskstogenerativeAI
technology,clericalsupportworkersarethe
mostexposedoccupationalgroupwith24
percentofthetasksinthesejobsassociated
withhighlevelofexposuretoautomation
andanother58percentwithmedium-level
exposure(seeFigure1).2Otheroccupational
groupsarelessexposed,withonly1to4
percentoftasksconsideredashavinghigh
automationpotential,andmedium-exposed
tasksnotexceeding25percent.Thismeans
that,whilecertaintasksintheseoccupations
couldpotentiallybeautomated,mosttasks
stillrequirehumanintervention.Suchpartial
automationcouldenableefficiencygains,by
allowinghumanstospendmoretimeonother
areasofwork.
Importantly,taskautomationdoesnot
necessarilyimplyredundancies,asthe
technologycanalsocomplementoraugment
humanlabourwhenonlycertaintasksare
automated.Whethertheadoptionofthe
technologyleadstoautomation(jobloss)or
augmentation(jobcomplementarity)depends
onthecentralityoftheautomatedtasktothe
occupation,howthetechnologyisintegrated
Figure1:Taskswithmediumandhigh-levelexposuretogenerativeAItechnologybymajor
occupationalgroup(ISCO1-digit)
Source:Gmyreketal.,2023.
2Thestudyanalysesthepotentialforautomationwiththe436internationallystandardizedISCO-08occupationsand
thenclassifiestheoccupationbasedonthemeanandstandarddeviationofthescore.Formoredetailssee[1].
6|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
intoworkprocessesandmanagement’s
desiretoretainhumanstoperformoroversee
someofthetasks,despitethepotentialof
automation.
TheILOanalysisusesoccupationalexposure
scores(themeanexposureofeachofthe
taskswithinanoccupation)andappliesthese
scorestoemploymentdatafromlabourforce
surveysofmorethan140countriestoassess
potentialemploymentimpactattheglobal
andregionallevel.Withrespecttoautomation,
theshareofemploymentthatisexposed
ishighestinEuropeandNorthernAmerica,
reflectingthegreatereconomicandlabour
marketdiversificationoftheseregions.In
LatinAmerica,AsiaandAfrica,theshareof
employmentpotentialexposedtoautomation
ismuchsmaller,duetothegreatershareof
workersemployedinoccupationsthatwould
notbeexposedtogenerativeAItechnology
suchasinagriculture,transportorfood
vending.
Nevertheless,women’spotentialexposure
totheautomatingeffectsofgenerative
AItechnologyismuchhigher,duetotheir
over-representationinclericaloccupations
(seefigure2).Inmostregions,thepotential
exposureofwomenismorethandoublethatof
men’sexposure.Someofthisemploymentisin
businessprocessoutsourcing,suchascontact
orcallcenterwork,whichisanimportantpart
oftheeconomyofseveraldevelopingcountries,
includingIndiaandthePhilippines.Theindustry
isanimportantsourceofformalandrelatively
well-paidemployment,particularlyforwomen.
Whilepotentialexposuredoesnotnecessarily
translatetodisplacement,itisclearthatthe
advancesintechnologymayputsomeofthese
jobsatrisk.3
Anotherfindingisthatasignificantlylarger
shareoftotalemploymentisinoccupations
withhighaugmentationpotential,andthis
holdsacrossregions,from10.2percent
inSub-SaharanAfricato16.1percentin
SoutheasternAsiaandthePacific(Seefigure
3).Thus,thepotentialforoccupationsto
benefitfromtheproductivity-enhancingeffects
ofthetechnologyisrelativelysimilaracross
countries.Inpractice,however,itislesslikely
Figure2:Potentialexposuretoautomationbyglobalsub-region
3‘AICouldKilloffMostCallCentres,SaysTataConsultancyServicesHead’,April25,2024.
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|7
Figure3:Potentialexposuretoaugmentationbyglobalsub-region
toberealizedduetoconstraintsinphysical
infrastructure(electricityaccess,broadband)
aswellasdigitalskills.Indeed,subsequent
researchthatincorporatesdataoncomputer
useatwork[2]revealsthatmanyofthe
occupationswithpotentialforaugmentation
haverelativelylowusageofcomputeratwork,
suggestingthattheconditionsarenotinplace
forrealizingthepotentialproductivitygains.
AscanbeseeninFigure4,theshareof
workerswithoutaccesstoacomputeratwork
(“nocomputer”)exceedsthosewhousea
computerin9ofthe16countrieslisted.As
Figure4:Potentialexposuretoaugmentationandcomputeruseatwork
Source:Gmyrek,WinklerandGarganta,2024.
8|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
such,thelikelihoodtorealizeproductivitygains
fromgenerativeAItechnologywillbelimited.
Figure5givesinformationonthe
characteristicsofthosewhomightbeaffected
byautomationfromgenerativeAItechnologyin
LatinAmerica.Asthedatashow,itiseducated
womenlivinginurbanareasandbelonging
tothetopfifthoftheincomedistributionthat
aremostexposed.ForLatinAmerica,these
occupationsareoverwhelminglyinsalaried,
formalemploymentandinthesectorsof
finance,professionalservicesandpublic
administration.Inshort,theyaregoodjobs,
whoselosswouldhavenegativemultiplier
effectsbotheconomicallyandsocially.
Theanalysisdoesnotaddressthepotentialfor
newjobcreation.Thus,whilemiddle-income
countriessuchasIndiaandthePhilippines,
aremoreexposedtotheautomatingeffects
ofgenerativeAItechnologyintheircallcentre
work,theirdigitalinfrastructureandskilled
workforcecanalsobeanassetforspawning
thegrowthofcomplementaryindustries.
Harnessingsuchpotentialisparamount.
Indeed,withtherightconditionsinplace,a
newwaveoftechnologycouldfuelgrowth
opportunities.Inthepast,technological
advancementshavespurrednewand
successfulindustriesinmanydeveloping
countries.OnesuchexampleistheM-Pesa
moneyservice,whichreliedonthediffusion
ofmobiletelephonesinKenya.Theservice,
inturn,increasedfinancialinclusionwhich
helpedtopropelthegrowthofSMEsandled
tocreationofanetworkof110,000agents,
40timesthenumberofbankATMsinKenya
[3];[4].Similarly,astudyofthediffusionof3G
coverageinRwandabetween2002and2019
foundthatincreasedmobileinternetcoverage
Figure5:Characteristicsofpersonsholdingoccupationsmostexposedtoautomation,
LatinAmerica
Source:Gmyrek,WinklerandGarganta,2024(forthcoming).
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|9
waspositivelyassociatedwithemployment
growth,increasingbothskilledandunskilled
occupations[5].Scholars[6]alsofindpositive
employmenteffects,fromthearrivalofinternet
in12Africancountries,albeitwithaslight
biastowardsskilledoccupations.Thesegains
areattributedtoincreasesinproductivityand
growthofmarketsthatfollowedincreased
connectivity,underliningtheneedforsuch
investments,givenimportantmultipliereffects
ontheeconomyandlabourmarkets.
Ensuringjobqualityunder
augmentation
Anotherareaofconcernisabouttheimpact
ofAItechnologyonworkingconditionsand
jobqualitywhenthetechnologyisintegrated
intotheworkplace.Whilesuchintegration
intoworktaskscanpotentiallypromotemore
engagingworkifroutinetasksareautomated,
itcanalsobeimplementedinwaysthat
limitsworkers’agencyoraccelerateswork
intensity.ConcernsoverAI’sintegrationat
theworkplacehasfocusedonthegrowthof
algorithmicmanagement,essentiallywork
settingsinwhich“humanjobsareassigned,
optimized,andevaluatedthroughalgorithms
andtrackeddata”[7].Algorithmicmanagement
isadefiningfeatureofdigitallabourplatforms,
butitisalsopervasiveinofflineindustries
suchasthewarehousingandlogisticssectors.
Inwarehousesanautomated,“voice-picking”
systemdirectswarehousestafftopickcertain
productsinthewarehouse,whileusingdata
collectiontomonitorworkersandsetthe
paceofwork[8].Besideslackingautonomyto
organizetheirworkorsetitspace,workersalso
havelittleabilitytoprovidefeedbackordiscuss
withmanagementabouttheorganizationof
work[9].TheintegrationofgenerativeAIinto
otherfieldssuchasbanking,insurance,social
services,andcustomerservicemorebroadly
mayhaveasimilareffect.
Technologicaladvancementsareoftenfelt
moreimmediatelyattheworkplaceleveland
areusuallybestaddressedattheworkplace.
Asaresult,whethertheeffectoftechnology
onworkingconditionsispositiveornegative
dependsinlargepartonthevoicethatworkers
haveinthedesign,implementationanduseof
technology.Havingsuchagencyreliesinturn
ontheopportunitiesforworkerparticipation
anddialogue.Thiscantakeplaceeither
throughformalizedsettings,suchasworks
councilsorguidanceprovidedincollective
bargainingagreements,orlessformally,in
workplaceswherethereisahighdegreeof
employeeengagement.StudiesinEurope
haveshownthatitiscountrieswithstronger
andmorecooperativeformsofworkplace
consultation,essentiallytheNordiccountries
andGermany,whereworkersaremoreopento
technologicaladoptionattheworkplace[10].
10|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Section3
TheAIvaluechainand
thedemandforskills
Liketheproductionofmanygoodsand
servicesintheglobaleconomy,AIhasitsown
valuechain.AsdepictedinFigure6,thereare
differentstagesoftheAIvaluechain,eachwith
specifichumanandsocialinfrastructureneeds.
Asistypicalinmostglobalvaluechains,stages
differintheamountofvaluereceivedforthe
contributionmade,withlower-valueadded
activitiespredominantinmiddleandlow-
incomecountriesanddesignanddeployment
associatedwithhigher-incomecountries.
Dataisfundamentaltothedevelopmentand
operationofAIsystems.Human-prepared
dataisfedintoAIsystemstohelpthemlearn
thenecessaryconnectionsandpatternsfor
functionality.Thesourcesofthisdataare
diverse,dependingonthesystem’spurpose.
Publiclyavailabledata,suchasUnitedNations
documentsusedfortrainingtranslation
programs,contributedtoadvancesinnatural
languageprocessing.Proprietarydataisalso
crucial,particularlyinworkplaceapplications,
likecallcenterrecordingsusedtotrain
chatbotsforcustomerservice.Withglobal
connectivity,datacollectioncontinuesto
providetheessentialrawmaterialforfutureAI
applications.
Whendataiscollected,itisusually
unstructured.Highlyskilleddataengineers
willpre-processthedataintoausableformat,
but‘datalabelers’areneededtolabeland
classifydatasothatitisusable.Labelled
andannotateddatasetsarecriticalforthe
developmentandeffectivenessofmachine
learningmodels.Workersinvolvedindata
enrichmentcarryoutanarrayoftasksthat
includemarkingradiologyscanstoaidin
creatingAIsystemscapableofdetecting
cancer;categorizingtoxicandunsuitable
onlinecontenttoimprovecontentmoderation
algorithmsordiminishthenegativityinlarge
languagemodelresponses;annotating
videofootagefromdrivingsessionstotrain
autonomousvehicles;editinglargelanguage
modeloutputstoboosttheirfunctionality;and
more.4
Contentmoderationistheprocessof
monitoringandfilteringuser-generated
contentondigitalplatforms,suchassocial
media,forums,andwebsites,toensurethat
itcomplieswiththeplatform’sguidelinesand
policies.Thegoalofcontentmoderationis
tomaintainasafe,respectful,andpositive
environmentforallusersbyremovingor
Figure6:ValuechainofAI
1234567
Note:Orangerepresentstheactivitiesthathavelowervalue-added.
Source:Authors’elaboration.
4ValuingDataEnrichmentWorkers:TheCaseforaHuman-CentricApproachtoAIDevelopment|UnitedNations
MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|11
flaggingcontentthatisinappropriate,offensive,
harmful,orillegal.Contentmoderationcanbe
performedmanuallybyhumanmoderators
orautomaticallybyusingalgorithmsand
machinelearningtools.Thetypesofcontent
thatmaybesubjecttomoderationcanvary
widely,includingbutnotlimitedtohate
speech,harassment,violence,nudity,andfalse
information.Evenwiththeuseofalgorithms
andmachinelearningtoolsforcontent
moderation,thereistypicallyalwaysahuman
involvedintheprocess.Thesetechnologies
canhelpautomateandscalethemoderation
process,buttheyarenotperfectandcan
sometimesmakemistakesormissnuances
thatahumanmoderatorwouldbeabletopick
upon.
Inmanycases,algorithmsareusedtoflag
orprioritizecontentforreviewbyhuman
moderators,whothenmakethefinaldecision
onwhetherthecontentshouldberemovedor
allowedtoremainontheplatform.Additionally,
humanmoderatorsmayalsobeinvolvedin
trainingandimprovingthealgorithms,by
providingfeedbackandlabellingdatathatcan
beusedtorefinethesystem’saccuracyand
effectiveness.Individualstaskedwithcontent
moderationdutiesinsocialmediaplatforms
oftensufferfromanxiety,depression,andpost-
traumaticstressdisorder,adirectconsequence
oftheircontinuousexposuretodistressing
materialssuchasmurder,suicide,sexual
assault,orchildabusevideos.
Theseexamplesdemonstratehowhumansare
integraltotheprovisionofservicesmarketed
ordescribedas“artificialintelligence”.Indeed,
JeffBezosdescribedAmazon’sMechanical
Turk(AMT)platformas“artificial-artificial-
intelligence”asitwashumanintelligence
thatwasprovidingthelabour-intensivework
neededforartificialintelligencesystemsto
operate.AsdescribedontheAMTsite,the
platformprovides“anon-demand,scalable,
humanworkforcetocompletejobsthat
humanscandobetterthancomputers,for
example,recognizingobjectsinphotos”.5
Workersontheplatformareaccessiblethrough
anapplicationprogramminginterface(API),
allowingprogrammerstocallonworkerswith
afewsimplelinesofcodewhenworkingonan
algorithm[11].
InadditiontoplatformssuchasAMTand
Appen,datalabelerssometimesworkthrough
third-partycompanieshiredbyleading
techfirms,inasubcontractingrelationship.
Althoughtherearestillmanydatalabelers
workingintheUnitedStatesinEurope,muchof
theworkisbeingdoneindevelopingcountries,
giventhelowremunerationassociatedwiththe
work.Whileprecisefiguresonthenumbersof
personsworkingasdatalabelersdonotexist,
estimatesrangeinthetensofmillions,and
demandforsuchworkislikelytocontinueas
AIdatasetsandtrainingneedsgrow[12].The
sizeofthemarketisestimatedatbetweenUS
$1-$3billionandlikelytoexperiencedouble-
digitgrowthoverthenext5years[13].
Datalabelingworkdoesnotrequiremany
qualifications,besidesliteracy,digitalskills
andaccesstocomputer(ormobiledevice)and
internet.Studiesofearningsofonlineplatform
workersintheUSthatperformthiswork,
regularlyreportmedianearningsofroughly$2
-$3perhour,orwellbelowthefederalminimum
wageofUS$7.25[14];[11].Giventhelowlevel
ofpay,itisunsurprisingthatmuchofthiswork
hasmovedtodevelopingcountries.
Butevenfromadevelopingcountry
perspective,theearningsarelow,particularly
consideringtheskillleveloftheworkforce,
withmanyworkersholdinguniversityand
post-graduatedegrees[11].Fortheworkers
whoworkthroughdigitallabourplatforms–
andnotbusinessprocessoutsourcingfirms
–thereistheaddedconcernthattheyare
hiredasindependentcontractorsandarethus
notcoveredbytheprotectionsandbenefits
emanatingfromastandardemployment
relationship.Moreover,analysesofearnings
differentialsbetweenworkersinIndiadoing
similartypesofdataannotationworkrevealed
thatplatformworkersearnedtwo-thirds
lessthancomparable,non-platformworker
employees,evenbeforeaccountingforother
benefitssuchassocialinsurancecontributions
[15].
5SeeAmazonMechanicalTurkAPIReference-AmazonMechanicalTurk.Accessedon9June2024.
12|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork
Butevenamongbusinessprocessoutsourcing
firms,thereareconcernsabouttheworking
conditionsoftheseworkers,withonecase
studyofadataannotationenterprisewith
officesinKenyarevealinglowpay,insecure
workandgender-basedworkplaceviolence
[16].Furthermore,thestudyarguedthatthe
dataannotationskillsusedinthislineofwork
werenotessentiallytransferable,questioning
thecareer-enhancingimpactofthislineof
work.
Movingalongthevaluechain,thesubsequent
parts–modeldesign,modeltrainingand
tuning,deploymentandmaintenance–
representacontrastingpicturewiththe
skillsneedsandworkingconditionsof
dataannotationwork.Theyalsoinvolve
muchgreaterrequirementsforphysical
infrastructure,particularlycomputepower
necessaryformodeltrainingandtuning.These
stagesrequiretheskillsofhighlyqualified
computerscientistsorgraduatesfrom
otherSTEM6fieldsinadditiontosignificant
investmentsinresearchanddevelopment.
ApartfromChinaandIndia,emergingmarkets
havegarneredonlyasmallportionofglobal
investmentinadvancedtechnologies.From
2008to2017,totalventurecapitalflowsto
emergingmarkets,excludingChinaandIndia,
amountedtojust$24billion,whiletheUnited
Statesaloneattracted$694billionduringthe
sameperiod.7
Annually,morethan$300billionisspent
globallyontechnologytoenhancecomputing
capacity.However,theseinvestmentsare
unevenlyspread,makingthedisparityinaccess
tocomputinginfrastructurebothwithinand
amongvariousregionsincreasinglyevident.A
limitednumberofcountriesareleadingtheway
indevelopingcomputecapacity,whilemany
othersarebeginningfromalowbase.TheUS
holdsasignificantadvantageindata-centre
construction,farsurpassinginvestmentsmade
byanyothernation.AlthoughChina,Singapore,
theNetherlands,andafewothershave
developedsubstantialcapacity,mostcountries
havefewerthan20top-tierdatacentres.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年软磁材料项目发展计划
- 2025年高中人教版地理选修四《城乡规划》知识点归纳
- 3 心脏和血液 教学设计-2023-2024学年科学五年级上册教科版
- 2023一年级数学下册 五 加与减(二)练习三教学实录 北师大版
- 7生命最宝贵 (教学设计)2024-2025学年统编版道德与法治三年级上册
- 2024年春八年级历史下册 第13课 民族团结与共同繁荣教学实录1(pdf) 川教版
- 健康管理手册与饮食运动建议(侧重健康生活)
- 农业科技行业农业信息化技术应用测试卷
- 3不懂就要问 教学设计-2024-2025学年语文三年级上册统编版
- 早期康复护理模式在脑梗死护理中的效果研究
- 2025年全国高考体育单招政治时事填空练习50题(含答案)
- 2024年医疗器械经营质量管理规范培训课件
- 中华人民共和国学前教育法-知识培训
- 2024年计算机二级WPS考试题库380题(含答案)
- 节能评估报告编制要求 具体规定
- 基于智能巡检机器人与PLC系统联动控制设计和实现电子信息工程专业
- 毕业设计(论文)VFP小说租阅管理系统
- 河南省内影响工程选址的主要活动断裂资料汇编(最终版)
- (完整版)幼儿园教师优质课评分表
- 河北省工伤职工停工留薪期分类目录 (工伤)
- 人民调解档案规范文本.doc调解文书的格式及使用说明
评论
0/150
提交评论