




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AIforAfrica:
Usecases
delivering
impact
July2024
Copyright©2024GSMA
GSMAGSMACentralInsightsUnit
TheGSMAisaglobalorganisationunifyingthemobile
ecosystemtodiscover,developanddeliverinnovation
foundationaltopositivebusinessenvironmentsand
societalchange.Ourvisionistounlockthefullpowerof
connectivitysothatpeople,industry,andsocietythrive.
Representingmobileoperatorsandorganisationsacrossthe
mobileecosystemandadjacentindustrieschallenges,the
GSMAdeliversforitsmembersacrossthreebroadpillars:
ConnectivityforGood,IndustryServicesandSolutions,and
Outreach.Thisactivityincludesadvancingpolicy,tackling
today’sbiggestsocietal,underpinningthetechnologyand
interoperabilitythatmakemobilework,andprovidingthe
world’slargestplatformtoconvenethemobileecosystem
attheMWCandM360seriesofevents.
TheCentralInsightsUnit(CIU)sitsatthecoreofGSMA
MobileforDevelopment(M4D)andproducesin-depth
researchontheroleandimpactofmobileanddigital
technologiesinadvancingsustainableandinclusive
development.TheCIUengageswithpublicandprivate
sectorpractitionerstogenerateuniqueinsightsandanalysis
onemerginginnovationsintechnologyfordevelopment.
Throughourinsights,wesupportinternationaldonorsto
buildexpertiseandcapacityastheyseektoimplement
digitisationinitiativesinlow-andmiddle-incomecountries
throughpartnershipswithinthedigitalecosystem.
Contactusbyemail:centralinsights@
Weinviteyoutofindoutmoreat
FollowtheGSMAonTwitter/X:@GSMA
ThisinitiativehasbeenfundedbyUKAidfromtheUK
GovernmentandissupportedbytheGSMAandits
members.Theviewsexpresseddonotnecessarilyreflect
theUKGovernment’sofficialpolicies.
AxumisanAfrocentricimpactcompanydedicatedto
fosteringclimate-positive,digitallyinnovative,inclusive
growthacrossAfrica,theMiddleEastandaroundthe
world.Thecompanyworkswithlocallyandglobally
influentialleadersthatseektodrivesustainable
development,inclusionandprosperity.
Throughstrategicleadershipandtheabilitytotransform
ideasintoreality,Axumpartnerswithdiversestakeholders
todrivepositivechange.Boastingover150yearsof
collectiveleadershipexperience,andateamofnearly
100across10officesinAfricaandtheMiddleEast,Axum
leveragesawealthofmultisectoralandmulticultural
expertisetohelpclientsnavigatepressingglobal
challengesandrealiseAfricaandtheMiddleEast’s
immensepotential.
Authorsandcontributors
Authors:EugénieHumeauandTanviDeshpande
Contributor:DanieleTricarico
Acknowledgements
ThisreportdrawsonresearchconductedfortheGSMAby
Axum.WewouldliketothankGathoniKang'ethe,Jamila
Raji,JonathanMunge,SalmaAitHssayene,IsisNyong’o
MadisonandRobinMillerfortheircontribution.
Wewouldliketothankthefollowingindividualswhowere
partofourExpertAdvisoryGroupandprovidedguidance
andexpertiseduringtheresearchprojectthroughvarious
engagements:AlbanOdhiambo(TonyBlairInstitutefor
GlobalChange),DeshniGovender(GIZ–FAIRForward),
DrGirmawAbebeTadesse(MicrosoftAIforGoodLab),
KateKallot(Amini),KoliweMajama(MozillaFoundation),
LavinaRamkissoon(AfricanUnion),LilySteele(Global
InnovationFund),LinetKwamboka(GlobalPartnershipfor
SustainableDevelopmentData),LukasBorkowski(Viamo),
MatthewSmith(IDRC)andDrOlubayoAdekanmbi(Data
ScienceNigeria).
WewouldalsoliketothankDrEmmyChirchirandDr
EmmelineSkinner(FCDOEastAfricaResearchand
InnovationHub),KristinKlose(FCDOSouthAfricaResearch
andInnovationHub)andOluwasegunAdetunde(FCDO
WestAfricaResearchandInnovationHub)fortheirinput
andfeedback.
Finally,wewanttothankthemanyindividualsand
organisationsthatcontributedtotheresearch.Afulllistof
organisationsconsultedfortheresearchislistedattheend
ofthereport.
Contents
Executivesummary4
1.Introduction7
2.Researchobjectivesandmethodology10
3.DefiningAI14
WhatisAI?15
AIfundamentalsinAfrica16
4.Usecasesdeliveringimpact29
Keytrendsacrossusecases30
Agricultureandfoodsecurity35
Energy42
Climateaction49
5.Towardsathrivingecosystem56
Creatingaconducivepolicyenvironment57
Fosteringpartnerships60
Unlockingfinancingatscale63
Supportingresearchanddevelopment64
6.Conclusionandrecommendations66
Annexes72
Listoffigures
Figure1EstimatedannualvalueoftheAImarket
inAfricarelativetotheglobalmarket
Figure2PotentialvalueaddedbyAItothe
Africaneconomy
Figure3TheAIecosystemframework
Figure14dAllocationofusecasesbyownership
Figure14eAllocationofusecasesbytypeof
solution
Figure15Agriculture’scontributiontoGDPand
labourforcebycountry
Figure4ThefiveVsofbigdata
Figure5Examplesofdatatypesandsourcesfor
AIfordevelopment
Figure6Generationandusageofdatasets
globally
Figure16Overviewofusecasesinagricultureand
foodsecurity
Figure17Heatmapofusecasesinagricultureand
foodsecuritybycountry
Figure18Accesstoelectricitybycountry
Figure7Prevalenceofinternetcontentin
Africanlanguagescomparedtoglobal
benchmarks
Figure19Africancountrieswithmorediesel
generatorcapacitythangridcapacity
Figure20ElectricitygridmixinSub-SaharanAfrica
Figure8AIinfrastructureandcomputelayers
Figure21Overviewofusecasesinenergy
Figure9Currentandprojectedsmartphone
adoptionbycountry
Figure22Heatmapofusecasesinenergyby
country
Figure10Projectedpercentageof5Gconnections
bycountry
Figure11SkillsetsrequiredbyAIbuildersandAI
users
Figure12Whatmakesagoodprompt?
Figure13Distributionofusecaseapplicationsby
country
Figure27AIpolicydevelopmentinAfrica
Figure14aAllocationofusecasesbysector
Figure14bAllocationofusecasesbytypeofAI
Figure14cAllocationofusecasesbytypeof
organisation
Figure23CO2emissionsbyregion
Figure24Overviewofusecasesinclimateaction
Figure25Remotesensingasatooltosupport
climateaction
Figure26Heatmapofusecasesinclimateaction
bycountry
Figure28Typesofactorsinvolvedinpartnerships
forAI
Listoftables
Table1Researchmethodology
Table2Hungerassessmentbycountry
Table5VenturecapitalinvestmentsinAIby
country
Table3Vulnerabilitytoclimatechangeand
readinesstoimproveresilience
Table4Venturecapitalinvestmentsintechby
country
Table6CountryranksforR&Dcapabilities
Table7KeyrecommendationstosupportAI
deploymentandadoption
Listofboxes
Box1Buildinglocallanguagedatasets:Challenges
andopportunities
Box5Usecasedeepdive:Foodsecurity
forecasting
Box2Whatarethebenefitsofedgecomputing?
Box3'AskViamoAnything'bringsgenerative
AItechnologytodigitallydisconnected
communities
Box4Usecasedeepdive:Precisionagriculture
Box6Usecasedeepdive:Energyaccessand
demandassessment
Box7Usecasedeepdive:Biodiversitymonitoring
Box8UNESCO’shumanrights-centredapproachto
theethicsofAI
AIforAfrica:Usecasesdeliveringimpact
2/76
Listofacronyms
AIArtificialIntelligenceIVRInteractiveVoiceResponse
CDRCallDetailRecordsLLMLargeLanguageModel
DFSDigitalFinancialServicesMLMachineLearning
EWSEarlyWarningSystemMNOMobileNetworkOperator
GDPGrossDomesticProductNLPNaturalLanguageProcessing
GISGeographicInformationSystemNRMNaturalResourcesManagement
GPTGenerativePre-trainedTransformerPAYGPay-As-You-Go
GPUGraphicProcessingUnitPPPPublic-PrivatePartnership
HPCHighPerformanceComputingR&DResearchandDevelopment
HWCHuman-WildlifeConflictSHSSolarHomeSystem
IoTInternetofThingsUSSDUnstructuredSupplementaryServiceData
Definitions
AIforDevelopment:Weusetheterm‘AIfor
development’torefertotheuseofAIand
itsapplicationswiththepotentialtoaddress
developmentchallengesinlow-andmiddle-income
countries.
Algorithm:Aprocessorsetofrulestobefollowed
incalculations,especiallybyacomputer,tosolvea
problem.
Artificialintelligence:Artificialintelligence(AI)
iscomprisedofwidelydifferenttechnologiesthat
canbebroadlydefinedas“self-learning,adaptive
systems.”1AIhasthecapabilitytounderstand
language,solveproblems,recognisepicturesand
learnbyanalysingpatternsinlargesetsofdata.
BigTech:Inthisreport,BigTechplayersreferto
thelargetechcompaniesknownglobally,including
Google,Microsoft,IBM,Meta,andAmazon.The
terms'BigTech'and'largetechcompanies'areused
interchangeablyinsomecontexts.
Computervision:AtypeofAIthatenables
computersandothermachinestoidentifyand
interpretvisualinputsfromimagesandvideos.3
GenerativeAI:AtypeofAIthatinvolvesgenerating
newdataorcontent,includingtext,imagesorvideos,
basedonuserpromptsandbylearningfromexisting
datapatterns.
Machinelearning:AsubfieldofAI,broadlydefined
asthecapabilityofamachinetoimitateintelligent
humanbehaviourandlearnfromdatawithoutbeing
explicitlyprogrammed.4
NLP:Afieldofmachinelearninginwhichmachines
learntounderstandnaturallanguageasspokenand
writtenbyhumans,insteadofthedataandnumbers
normallyusedtoprogramcomputers.
PredictiveAI:AtypeofAIthatusesstatistical
analysisandmachinelearningalgorithmstomake
predictionsaboutpotentialfutureoutcomes,identify
causationandassessrisks.5
Compute:Computereferstotheprocessof
performingcalculationsorcomputationsrequired
foraspecifictask,suchastraininganAImodel.It
alsoencompassesthehardwarecomponents,like
chips,thatcarryoutthesecalculations,aswellasthe
integratedsystemsofhardwareandsoftwareusedto
performcomputingtasks.2
Remotesensing:Acquiringinformationfroma
distanceviaremotesensorsonsatellites,aircrafts
anddronesthatdetectandrecordreflectedor
emittedenergy.AllobjectsonEarthreflect,absorb
ortransmitenergy,withtheamountvaryingby
wavelength.Researcherscanusethisinformationto
identifydifferentEarthfeaturesaswellasdifferent
rockandmineraltypes.6
1DefinitionbytheInternationalTelecommunicationUnion(ITU).
2AINowInstitute.(2023).ComputationalPowerandAI.
3DefinitiontakenfromMicrosoftAzure’sdictionaryoncloudcomputing.
4DefinitionbytheMITSloanSchoolofManagement,basedonthedefinitionbyAIpioneerArthurSamuel.
5DefinitionfromtheCarnegieCouncilforEthicsinInternationalAffairs.
6DefinitionbyNASAEarthdata.
AIforAfrica:Usecasesdeliveringimpact
3/76
Executivesummary
ThepotentialofAIinAfrica
AIholdsimmensepotentialtoboostAfrica’s
economyandtosupporttheSustainable
DevelopmentGoals(SDGs)onthecontinent.WhileAI
isalreadybeingdevelopedanddeployedtosupport
arangeofusecasesacrossAfricancountries,little
researchhasfocusedonbuildingabodyofevidence
ofAIusecasesfordevelopmentonthecontinent.
Thisreportisbasedontheanalysisofover90use
caseapplicationsidentifiedinKenya,Nigeria,and
SouthAfrica–whichbenefitfromthrivingtech
ecosystems–acrossagricultureandfoodsecurity,
energy,andclimate.WhilemanyAIusecasesare
relativelynascent,withsomebeingdeployedas
partofprojectsorpilotschemes,anumberof
commerciallyviablesolutionshavealsoemerged.
Often,AIisbeingincorporatedintoexistingdigital
productsandservices,actingasanenablertomake
digitalsolutionsmorerelevantandefficient,amplify
theirimpact,andfacilitatescaling.
TheagritechsectorisseeingmostoftheAI
innovation,especiallyinKenyaandNigeriawhere
agriculturecontinuestoplayasignificantroleinthe
economy.AIisalreadybeingusedforagricultural
advisory,withcompanieslikeTomorrowNowand
ThriveAgricprovidingfarm-levelinsightstofarmers,
andforfinancialserviceswithcompanieslike
ApolloAgriculturedevelopingalternativecredit
assessmentmethods.AIisalsobeingdeployed
intheenergysector,especiallyinNigeria,where
emergingtechnologieslikeInternetofThings(IoT)
actasanentrypointforadvanceddataanalytics
insmartenergymanagement.Usecasessuchas
energyaccessmonitoringandproductiveuseasset
financing,developedbycompanieslikeNithio,
remainatadevelopingornascentstagebutpresent
significantpotentialtoreduceenergypoverty.AI
isalsosupportingclimateusecasesespeciallyfor
biodiversitymonitoringandwildlifeprotection
inKenyaandSouthAfrica,drivenbylargetech
companieslikeMicrosoft’sAIforGoodLabandnon-
profitorganisationssuchasRainforestConnection.
AIforAfrica:Usecasesdeliveringimpact
4/76
AIfundamentalsandenablingenvironment
Theincreasingavailabilityofdatageneratedby
remotesensingtechnologies,suchason-the-ground
sensors,droneswithhigh-resolutioncameras,and
satellites,hasledtothedevelopmentofmany
AI-drivenusecasesacrosssectors.Analysisof
geospatialandremotesensingdata,poweredby
machinelearning(ML),cansupportawiderange
ofusecasesandactivitiessuchasmonitoringsoil
conditionsforeffectivecropmanagement,mapping
energyaccessinoff-gridareastoinformenergy
planning,andmonitoringclimatechangeimpacts
onecosystems.Despitetheseadvancements,the
availabilityoflocallyrelevantdataremainslimitedin
Africaandposesamajorobstacletodevelopingand
deployingtailoredsolutionsthataddresschallenges
thatareuniquetothecontinent.Inadditionto
barriersinaccessinggovernmentanddomain-
specificdata,oneofthemostsignificantgapsisin
languagedata.Thescarcityoflocallanguagedata
limitstherelevanceofAI-enabledservicesandposes
asignificantbarriertothedevelopmentofgenerative
AIsolutionsthatrelyonlanguagemodels.
InfrastructureandcomputecapacityinAfrica
isgrowing,andcountrieslikeSouthAfricahave
emergedasregionalleaders.Increasinginvestments
indatacentresfromlargetechcompaniesandMobile
NetworkOperators(MNOs)inNigeriaandKenyaare
alsodrivingmomentumintheregion,bringingcritical
storageandcomputingcapacitytothelocallevel.
However,thehighcostsofhardwaresuchasGraphic
ProcessingUnits(GPUs)andcloudcomputingstill
constituteamajorbarriertoAIdeploymentand
adoption,especiallyforlocalentrepreneursand
researcherswithlimitedfinancialresources.Aslocal
computeecosystemscontinuetodevelop,thereisan
opportunityforcountriesinAfricatotapintotheir
mobile-firstmarketstobuildcapacityindistributed-
edgecomputing.InKenyaforexample,deeptech
companyFastaggerdevelopsMLcapabilitiesonedge
devices,includingonlower-endsmartphones.
Acrosscountries,asignificantskillsgapstill
underminesthedevelopmentoftheAIecosystem
andusecases.WhileuniversitiesofferAI-related
courses,theyoftenfailtokeeppacewithindustry
needs,andstudentshavelimitedopportunitiesfor
practicallearningandhands-onexperiences.Thereis
alsoadisproportionatefocusoncoreAIskills,suchas
MLanddatascience,withlessemphasisonbuilding
themultidisciplinaryskillsetsneededtoleverage
AItoaddresspressingsocioeconomicchallenges.
Despitethesechallenges,organisationslikeData
ScienceNigeria(DSN)offerupskillingandmentorship
programmestobuildapipelineofAItalent.In
parallel,endusersrequireafoundationallevelof
digitalliteracytoaccessAI-enabledservices,which
areprimarilyaccessiblethroughdigitalchannelslike
mobiledevices.However,lackofknowledgeand
skillsremainsoneofthegreatestbarrierstoadoption
anduseofdigitaltoolsandservices,especiallyfor
women,low-incomeandruralcommunities,and
personswithdisabilities.
WhileKenya,NigeriaandSouthAfricaareallregional
techleadersandhavesoliddigitalfoundationsthat
canserveasthebuildingblocksforAIdevelopment,
keychallengesremainintheecosystem.Despite
wideenthusiasmaboutthepotentialofAIforAfrica
forexample,privatesectorinvestorsremainrisk-
averseaboutinvestingindeeptech,andstartups
havetorelyongrantfundingfromdevelopment
partnersanddevelopmentfinanceinstitutions(DFIs).
Similarly,lowpublicandprivatesectorinvestmentin
ResearchandDevelopment(R&D)mayundermine
thedevelopmentoflocalsolutions.Whilesome
countriesinAfricahavealreadydevelopednationalAI
strategies,Kenya,NigeriaandSouthAfricaarestillin
theprocessofdraftingtheirown–buthaveadopted
inclusiveformulationprocesses.Mostframeworks
acrossthecontinentremainintheirinfancy,
highlightingtheneedtoshiftfrompolicyformulation
toimplementationandtoensureethical,responsible
andsafeuseofAI.
AIforAfrica:Usecasesdeliveringimpact
5/76
High-levelrecommendations
Differentstakeholders–governments,development
partners,DFIs,NGOsandCivilSocietyOrganisations
(CSOs),largetechcompaniesandstartups,and
researchandacademicinstitutions–cantakea
numberofactionsandcollaboratetoensurethat
impactfulinnovationsinAfricacanbedeployedand
scaled.Thisinvolvesinvestingindomain-specific
andlocallanguagedata,adoptingparticipatory
approachestodatacollection,unlockingaccessto
existingdatasources,andensuringdataprivacyand
security.Strengtheningbaselineinfrastructureand
promotingrenewableenergy,providinghardware
andcloudcredits,enhancingedgecomputing
capabilitiesandbuildinginstitutionalcapacitywillbe
essentialtoboostlocalcomputecapacity.Inaddition,
fosteringacademic-industrycollaboration,raising
awarenessandbuildingcapacityinthepublicsector
willbeessentialtocreateapipelineofAItalentwhile
ensuringinformedpolicymaking.Tofosteradoption
andusageofAI-enabledservices,enhancingdigital
skillsamongendusersandintegratingemergingskills
likeprompt-engineeringintoupskillingprogrammes
willbekey,especiallyasgenerativeAIsolutions
graduallygrowinAfrica.
Stakeholdersacrosssectorscanalsofocuson
supportingthewidertechandAIecosystemto
fosteranenvironmentconducivetoinnovation
andAIdeploymentacrossusecases.Thisinvolves
engaginginpartnershipstounlockaccesstocritical
resourcesforAIentrepreneursandresearchers,and
tosupportthedevelopmentoftheAIecosystem
throughdata-sharingorinfrastructure-sharing
initiatives.Adoptingaconsortium-basedapproach
hasthepotentialtohelpaddressthefinancinggap,
whileadoptinginnovativefinancemechanisms
cande-riskinvestments.Combiningfundingwith
technicalassistanceandgo-to-marketsupportcan
alsohelpfoundersintheirscalingjourney.Increased
R&Dspendingwillbeessentialtosupportlocal
researchcapacity,whilelocal-globalknowledge
exchangecandrivefurthermomentumandraise
awarenessaboutlocalinnovation.Ascountrieswork
ondevelopingnationalAIstrategies,itwillbecritical
toensureacollaborativeandinclusiveprocess,to
includeprinciplesfortheethicalandsafeuseofAI,
andtoestablishaclearroadmapforimplementation.
Policymakerscanalsoconsiderrollingoutregulations
inaphasedmannertoallowinnovationtoflourish.
AIforAfrica:Usecasesdeliveringimpact
6/76
1.Introduction
AIforAfrica:Usecasesdeliveringimpact
7/76
Overthepastyear,artificialintelligence(AI)and
itstransformativepotentialhascapturedglobal
attention.ThepotentialofAIinhelpingachievethe
2030SustainableDevelopmentGoals(SDGs)iswell
established.7,8AIapplicationscancreatesocialand
economicimpact,especiallyinlow-andmiddle-
incomecountrieswhereinnovativeapproachesto
inclusiveandsustainabledevelopmentaremost
needed.Africarepresentsonly2.5%oftheglobalAI
market,yetrecentestimatessuggestthatAIcould
increaseAfrica’seconomyby$2.9trillionby2030—
theequivalentofincreasingannualGrossDomestic
Product(GDP)growthbythreepercent.9Thisboost
ineconomicgrowthcouldtranslateintosignificant
developmentimpactsforthecontinent,providing
employmentopportunitiesandhelpingtoraise
millionsoutofpoverty.
Figure1Figure2
EstimatedannualvalueoftheAI
marketinAfricarelativetotheglobal
market
PotentialvalueaddedbyAItothe
Africaneconomy
($trillion,2024-2030)
($trillion,2023)
6
WithAI
5
$2.9trillion
4
$16.5trillion
GlobalAIvalue
3
WithoutAI
$0.4trillion
AfricanAIvalue
Approx2.5%ofthe
globalAImarket
2
2024202620282030
GDPvaluewithAIGDPvaluewithoutAI
CumulativegainsinGDPaddedbyAI
7Smith,M.&Neupane,S.(2018).Artificialintelligenceandhumandevelopment:Towardaresearchagenda.IDRC.
8Bankhwal,M.etal.(2024).AIforsocialgood:Improvinglivesandprotectingtheplanet.McKinseyDigital.
9AI4DAfrica.(2024).AIinAfrica:Thestateandneedsoftheecosystem.
AIforAfrica:Usecasesdeliveringimpact
8/76
MobileconnectivityinSub-SaharanAfricacontinues
todrivedigitaltransformationandsocioeconomic
advancements.Agrowingproportionofthe
populationisconnectedtoandusingmobile
internet,andsmartphonepenetrationisexpectedto
reach88%by2030,creatingnewopportunitiesfor
digitalinclusionandusageofAI-enabledservices.10
CountriessuchasKenya,NigeriaandSouthAfrica
alreadyhavesomeofthemostadvancedtech
ecosystemsintheregion.Kenyaisparticularly
renownedforpioneeringmobilemoneythrough
M-Pesa,whileNigeriahasproducedseveralAfrican
unicorns.Thesecountriesalsohavetech-related
policiesthathavefosteredarelativelyconducive
environmentforinnovationandentrepreneurship.
Theirsoliddigitalfoundationscanserveasbuilding
blocksforthedevelopment,deploymentand
adoptionofAI.
However,unlockingthepotentialofAIwillrequire
overcomingseveralchallenges.Whilethecoverage
gaphassignificantlyreduced,theusagegapin
Sub-SaharanAfricastillstandsat59%,meaning
thatmillionsofpeoplewholivewithinthefootprint
ofamobilebroadbandnetworkarenotusing
mobileinternet.Significantdigitaldividesexistand
disproportionatelyaffectlow-incomegroups,those
whoarelesseducated,ruralpopulationsandwomen,
anddigitalisationandAIriskexacerbatingexisting
socioeconomicinequalities.Kenya,Nigeria,andSouth
Africahavecriticalinfrastructuregapsandundergo
regularpoweroutages.Inaddition,insufficient
availabilityofdataandlackofdataecosystems,low
levelsofdigitalskillsandliteracy,fragmentedornon-
enforcedpoliciesandnascentresearchcapacities
constitutekeybarriersforthedevelopmentoftheAI
ecosystem.AIalsobringssignificantrisksintermsof
dataprivacy,biasanddiscriminationthatneedtobe
addressedtoensuresafeandresponsibleuseofthe
technology.
Whiletherehasbeenanaccelerationoftechnology
companiesleveragingAIandinitiativestodevelop
andpromotetheuseofAIonthecontinent,
thesehavenotnecessarilyfocusedonaddressing
socioeconomicordevelopmentchallenges.Most
existingusecasesaretypicallyfoundinsectorssuch
asITservices,computersoftware,ormanagement
consulting.11Thereisalackoffocusonbuildinglocal,
inclusive,andsustainableAIsolutions12thatcan
helpaddresstheSDGsinAfrica.Thereisapressing
needtoidentifyandtestmodelsandusecasesthat
canaddressdevelopmentchallenges,aretailored
tomeetthespecificneedsoflocalcommunities,
andhavethepotentialtobescaledtoamplifytheir
impact.Consideringthediversecontextsandcultures
acrossAfrica,fosteringequitablepartnershipsto
buildAIusecasesfordevelopmentandnurturethe
growthoflocalecosystemswillbecriticaltoharness
thepotentialofAItohelpachievetheSDGsonthe
continent.
10GSMA.(2023).TheMobileEconomySub-SaharanAfrica2023.
11TheAIMediaGroupSouthAfrica.StateofAIinAfricaReport2022.
12Inthisreport,local,inclusiveandsustainableAIsolutionsreferstoAIapplicationsthataretailoredtolocalneedsandconstraintstofosterinclusivityandprioritise
addressingdevelopmentchallengesinlinewiththeSDGs.
AIforAfrica:Usecasesdeliveringimpact
9/76
2.Researchobjectivesand
methodology
AIforAfrica:Usecasesdeliveringimpact
10/76
Researchobjectives
ThisresearchseekstoidentifyAI-enabledusecases
andsolutionsthataddressdevelopmentchallenges
relatedtoagricultureandfoodsecurity,energyand
climateaction.ItfocusesonKenya,Nigeriaand
SouthAfrica,whoarealltechnologyleaderson
thecontinentandintheirsub-region,andpresent
significantpotentialtoleverageAIfordevelopment.
Morespecifically,theresearchseeksto:
1.IdentifyAI-enabledusecasesandsolutions
acrosstheselectedsectors,highlighttheirkey
requirementsandassesstheirpotentialforimpact,
scaleandconstraints.
2.ProvidealandscapeoverviewoftheAIecosystem
ineachcountrytoidentifygapsandopportunities
toimprovetheenablingenvironmentand
developmentofAI-enabledusecases.
Toaddresstheobjectivesoftheresearch,we
investigatedthefollowingkeypillarsoftheAI
ecosystemtounderstandhowtheyimpactthe
developmentandscalabilityofusecases:the
digitaleconomyfoundations,encompassingdigital
infrastructure,humancapitalandskills,andpolicy
andregulation;theAIfundamentals,includingdata,
AI-specificskills,andcomputecapacity;andcross-
cuttingenablers,suchaspartnerships,financing
mechanisms,andresearchanddevelopment.
Whilewehaveseparatedtheenablersofeachmain
pillarinourframework(Figure3)toshowthattheAI
ecosystemsitsontopofabroaderdigital/technology
ecosystem,wehavegroupedtheminthereportas
certainelementssuchasinfrastructure,skillsand
policycanbeunderstoodaspartofaspectrum.
3.Offerasetofrecommendationsforkey
stakeholders,pinpointingwaystocatalysethe
developmentoftheAIecosystemdelivering
impactintheregion.
Figure3
TheAIecosystemframework
i
Partnerships
Financing
mechanisms
Data
Researchand
development
AIfundamentals
ComputeAIskills
Digitaleconomyfoundations
Digital
infrastructure
Humancapital
andskills
Policyand
regulation
AIforAfrica:Usecasesdeliveringimpact
11/76
Thisreportreliesondesk-basedresearchandvalidationthroughdiversestakeholderengagement.
ThemethodologyisoutlinedinTable1.
Table1
Researchmethodology
DatasourceObjective
Desk-basedresearch
Reviewincludedgreyliteratureand
industry-specificreports,academic
publications,databas
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管桩买卖合同范本2025年
- 2025年教师资格之中学生物学科知识与教学能力模拟题库及答案下载
- 2020-2025年中级银行从业资格之中级银行管理综合练习试卷A卷附答案
- 医疗与医药行业:2025年生物制药市场趋势洞察报告
- 学前教育信息化2025年政策环境与市场机遇研究报告
- 二零二五版抗静电打地坪工程合作合同
- 二零二五年度对外承包工程借款合同范本:工程款支付与成本控制措施
- 二零二五年度中小企业融资合同范本
- 2025版房屋买卖交易背景调查及风险评估服务合同
- 2025年度苗木电商平台合作销售合同范本
- 公司之间借款协议书:免修版模板范本
- 脚手架作业危险源辨识、评价与分级管控措施表
- 屋檐修缮工程施工方案
- 2023年国家网络安全宣传周:树立网络安全意识
- 高风险供应商管理程序(经典-专业-建议收藏)
- 人身权教学课件
- 自建房外包合同模板
- 医疗器械使用前质量检查制度
- 华为解决方案营销化五环十四招(简版)
- 电子百拼设计练习题(智PU含答案小高)
- 花岗岩球状风化的形成机理新析
评论
0/150
提交评论