版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页2024-2025学年山东省郓城一中学数学九上开学调研试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,2、(4分)下图为正比例函数的图像,则一次函数的大致图像是()A. B. C. D.3、(4分)下列各曲线中不能表示y是x函数的是()A. B. C. D.4、(4分)若b>0,则一次函数y=﹣x+b的图象大致是()A. B. C. D.5、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=()A.4 B.3C.2 D.16、(4分)某校田径运动会上,参加男子跳高的16名运动员成绩如下表:成绩(m)1.451.501.551.601.651.70人数343231则这些运动员成绩的中位数是()A.1.5 B.1.55 C.1.60 D.1.657、(4分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8、(4分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为_____________10、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)11、(4分)若分式方程1x-3-2=k3-x有增根,则12、(4分)对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.13、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.三、解答题(本大题共5个小题,共48分)14、(12分)把厚度相同的字典整齐地叠放在桌面上,已知字典顶端离地高度与字典本数成一次函数,根据图中所示的信息:(1)若设有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),
求y与x的关系式;(2)每本字典的厚度为多少?15、(8分)下面是小东设计的“作矩形”的尺规作图过程,已知:求作:矩形作法:如图,①作线段的垂直平分线角交于点;②连接并延长,在延长线上截取③连接所以四边形即为所求作的矩形根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形:(保留作图痕迹)(2)完成下边的证明:证明:,,四边形是平行四边形()(填推理的依据)四边形是矩形()(填推理的依据)16、(8分)如图(1),折叠平行四边形,使得分别落在边上的点,为折痕(1)若,证明:平行四边形是菱形;(2)若,求的大小;(3)如图(2),以为邻边作平行四边形,若,求的大小17、(10分)如图,在锐角三角形ABC中,点D、E分别在边AC、AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=BE=4,AE=3,求CD的值.18、(10分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.(1)当t=1.5时,S=________;当t=3时,S=________.(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)20、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.21、(4分)如图,已知:∠MON=30∘,点A1、A2、A3在射线ON上,点B1、B2、B3...在射线OM上,ΔA1B22、(4分)如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.23、(4分)若,化简的正确结果是________________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.25、(10分)如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长m,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=2,n=6,求旗杆AB的长.26、(12分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.2、B【解析】
根据正比例函数图象所经过的象限,得出k<0,由此可推知一次函数象与y轴交于负半轴且经过一、三象限.【详解】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴且经过一、三象限.故选B.本题考查了一次函数图象与比例系数的关系.3、D【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定答案.【详解】显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选D.本题主要考察函数的定义,属于基础题,熟记函数的定义是解题的关键.4、C【解析】分析:根据一次函数的k、b的符号确定其经过的象限即可确定答案.详解:∵一次函数中∴一次函数的图象经过一、二、四象限,故选C.点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、C【解析】
作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OB于E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PE=PD,
∵PC∥OA,
∴∠BCP=∠AOB=2∠BOP=30°
∴在Rt△PCE中,PE=12PC=12×4=2,
故选本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.6、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.【详解】将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).故选:B本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7、D【解析】
人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,D错误,
再根据函数解析式求出自变量的值与函数值,有可判定C,B.【详解】如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,
∴y随x的增大而减小,
∴A,B错误,
设y=(k>0,x>0),把x=50时,y=1代入得:k=50,
∴y=,
把y=2代入上式得:x=25,
∴C错误,
把x=50代入上式得:y=1,
∴D正确,故选D.8、C【解析】
根据中位数和众数的概念进行求解.【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.本题考查1.中位数;2.众数,理解概念是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中点.∵E是AB的中点,∴DE是△ABC的中位线,.10、①③④【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.【详解】解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.11、-1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-7=0,所以增根是x=7,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘(x-3),得
1-2(x-3)=-k,
∵方程有增根,
∴最简公分母x-3=0,即增根是x=3,
把x=3代入整式方程,得k=-1.
故答案为:-1.考查了分式方程的增根,增根问题可按如下步骤进行:
①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12、【解析】
根据题目所给定义求解即可.【详解】解:因为,所以.本题考查了二次根式的运算,属于新定义题型,正确理解题中所给定义并进行应用是解题的关键.13、(22008-1,22008)【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.【详解】∵直线y=x+1和y轴交于A1,∴A1的交点为(0,1)∵四边形A1B1C1O是正方形,∴OC1=OA1=1,把x=1代入直线得y=2,∴A2(1,2)同理A3(3,4)…∴An的坐标为(2n-1-1,2n-1)故A2019的坐标为(22008-1,22008)此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.三、解答题(本大题共5个小题,共48分)14、(1)y=5x+85,(2)5cm.【解析】分析:(1)利用待定系数法即可解决问题;(2)每本字典的厚度==5(cm).详(1)解:根据题意知y与x之间是一次函数关系,故设y与x之间的关系的关系式为y=kx+b则,解得:k=5,b=85∴关系式为y=5x+85,(2)每本字典的厚度==5(cm).点睛:本题考查一次函数的应用、解题的关键是熟练掌握待定系数法解决问题.15、(1)见解析;(2)OC,对角线互相平分的四边形是平行四边形;一角为直角的平行四边形是矩形.【解析】
(1)根据要求作出图形即可.(2)根据对角线互相平分得到四边形ABCD是平行四边形,因为∠ABC=90°,且四边形ABCD是平行四边形,则可判定四边形ABCD矩形.【详解】解:(1)如图,矩形ABCD即为所求.(2)∵OA=OC,OD=OB,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,四边形ABCD是矩形(有一个角是直角的平行四边形是矩形)故答案为:OC,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.本题考查作图-复杂作图、平行四边形的判定、矩形的判定等知识,解题的关键是熟练掌握尺规作图、平行四边形的判定、矩形的判定.16、(1)详见解析;(2)30°;(3)45°.【解析】
(1)利用面积法解决问题即可.(2)分别求出∠BAD,∠BAB′,∠DAD′即可解决问题.(3)如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.想办法证明E,H,G,C四点共圆,可得∠EGC=∠EHC=45°.【详解】(1)证明:如图1中,∵四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,∴S平行四边形ABCD=BC•AE=CD•AF,∵AE=AF,∴BC=CD,∴平行四边形是菱形;(2)解:如图1中,∵四边形ABCD是平行四边形,∴∠C=∠BAD=110°,∵AB∥CD,∴∠C+∠B=180°,∴∠B=∠D=70°,∵AE⊥BC,AF⊥CD.∴∠AEB=∠AFD=90°,∴∠BAE=∠DAF=20°,由翻折变换的性质可知:∠BAB′=2∠BAE=40°,∠DAD′=2∠DAF=40°,∴∠B′AD′=110°﹣80°=30°.(3)解:如图2中,延长AE到H,使得EH=EA,连接CH,HG,EF,AC.∵EA=EC,∠AEC=90°,∴∠ACE=45°,∵∠AEC+∠AFC=180°,∴A,B,C,F四点共圆,∴∠AFE=∠ACE=45°,∵四边形AEGF是平行四边形,∴AF∥EG,AE=FG,∴∠AFE=∠FEG=45°,∴EH=AE=FG,EH∥FG,∴四边形EHGF是平行四边形,∴EF∥HG,∴∠FEG=∠EGH=45°∵EC=AE=EH,∠CEH=90°,∴∠ECH=∠EHC=45°,∴∠ECH=∠EGH,∴E,H,G,C四点共圆,∠EGC=∠EHC=45°.本题属于几何变换综合题,考查了平行四边形的性质和判定,菱形的判定,翻折变换,四点共圆,圆周角定理等知识,解题的关键是学会添加常用辅助线,利用四点共圆解决问题,属于中考压轴题.17、(1)详见解析;(2)【解析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE可得∠ADF=∠B,且∠EAD=∠BAC可证:△ADE∽△ABC;(2)利用相似的性质得出,AB=BE+AE=4+3=7,即可解答【详解】(1)证明:AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,∵∠EAF=∠GAC,∴∠AEF=∠ACG,∵∠EAD=∠CAB,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,∵AD=BE=4,AE=3,∴AB=BE+AE=4+3=7,∴,解得:AC=,∴CD=AC﹣AD=﹣4=.此题考查三角形相似的判定与性质,解题关键在于掌握判定法则18、(1);;(2)当t=或t=4时,四边形DEGF是平行四边形.【解析】
(1)当t=1.5时,如图①,重叠部分的面积是△FGH的面积,求出即可;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,求出即可;(2)进行分类讨论,列出方程即可求出t的值.【详解】解:当t=1.5时,如图①,重叠部分的面积是△FGH的面积,所以S=;当t=3时,如图②,重叠部分的面积是四边形FGBK的面积,也就是△FGH的面积减去△KBH的面积,所以S=×3×3-×2×2=.(2)由题意可以求得y1=;y2=t(0≤t≤4).<所以y1与y2关于t的函数图象如图③所示.因为运动过程中,DE∥FG,所以当DE=FG时,四边形DEGF是平行四边形.∵FG=AG,∴DE=AG,∴y1=y2.由图象可知,有两个t值满足条件:①当0≤t≤2时,由4-2t=t,解得t=;②当2<t≤4时,由2t-4=t,解得t=4.所以当t=或t=4时,四边形DEGF是平行四边形.一、填空题(本大题共5个小题,每小题4分,共20分)19、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.20、①②③④【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.21、32a【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案【详解】解:如图∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案为:32a.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.22、1【解析】
P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,则可知S△POC=S△PCA=k=2,进而可求得△POA的面积为1.【详解】解:过P作PC⊥OA于点C,
∵P点在y=x上,
∴∠POA=15°,
∴△POA为等腰直角三角形,
则S△POC=S△PCA=k=2,
∴S△POA=S△POC+S△PCA=1,
故答案为1.本题考查反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胡椒小猪说课稿
- 吊装工程模板施工合同
- 舞台灯光货场租赁协议
- 图书配送货车司机聘用协议
- 质押借款协议
- 农业设施商品混凝土施工协议
- 城市绿化机械台班施工合同
- 儿童游乐设施资产管理方案
- 矿山爆破安全帽管理办法
- 供水工程项目招投标资料
- 04S519小型排水构筑物1
- 肾病综合征业务学习
- 关于交通运输局自查报告范文
- 500万羽智能化蛋鸡养殖项目可行性研究报告-立项备案
- 人工智能(基础版)高职人工智能基础课程PPT完整全套教学课件
- 放弃父母的财产的协议书
- 《韩非子·五蠹》课件
- 公司危险源辨识与风险评价及控制措施清单
- 语文教学中如何进行分组教学
- Chinese Tea 中国茶文化 中英文
- 《婴幼儿行为观察、记录与评价》习题库(项目五)0 ~ 3 岁婴幼儿社会性发展观察、记录与评价
评论
0/150
提交评论