2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题【含答案】_第1页
2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题【含答案】_第2页
2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题【含答案】_第3页
2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题【含答案】_第4页
2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年山东省新泰市石莱镇初级中学九上数学开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如果,为有理数,那么()A.3 B. C.2 D.﹣22、(4分)菱形的两条对角线长分别为6和8,则菱形的面积是()A.10 B.20 C.24 D.483、(4分)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A. B.C. D.4、(4分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于不等式x+1≥mx+n的解集是()A.x≥m B.x≥2 C.x≥1 D.x≥﹣15、(4分)某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A.m B.m C.m D.m6、(4分)如图,函数y=kx和y=﹣x+4的图象相交于点A(3,m)则不等式kx≥﹣x+4的解集为()A.x≥3

B.x≤3

C.x≤2

D.x≥27、(4分)当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.8、(4分)如图,在中,,、是斜边上两点,且,将绕顺时针旋转后,得到,连接,则下列结论不正确的是()A. B.为等腰直角三角形C.平分 D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.10、(4分)若某组数据的方差计算公式是S2=[(7-)+(4-)2+(3-)2+(6-)2],则公式中=______.11、(4分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为_____.12、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.13、(4分)如图,于,于,且,,,则_______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。(1)求∠DOC的度数;(2)求出射线OC的方向。15、(8分)在平面直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.求a的值.16、(8分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?17、(10分)计算下列各题:(1)(2)18、(10分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t秒。(1)填空:直线AB的解析式是_____________________;(2)求t的值,使得直线CD∥AB;(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中,菱形的顶点在轴上,边在轴上,若点的坐标为,则点的坐标是____.20、(4分)分解因式:.21、(4分)如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,则EC的长为_________.22、(4分)计算-=_______.23、(4分)一副常规的直角三角板如图放置,点在的延长线上,,,若,则______.二、解答题(本大题共3个小题,共30分)24、(8分)解下列一元二次方程(1)(2)25、(10分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.26、(12分)如图1,已知直线与坐标轴交于两点,与直线交于点,且点的横坐标是纵坐标的倍.(1)求的值.(2)为线段上一点,轴于点,交于点,若,求点坐标.(3)如图2,为点右侧轴上的一动点,以为直角顶点,为腰在第一象限内作等腰直角,连接并延长交轴于点,当点运动时,点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

直接利用完全平方公式化简进而得出a,b的值求出答案即可.【详解】解:∵=a+b,

∵a,b为有理数,

∴a=7,b=4,

∴a-b=7-4=1.

故选:A.此题主要考查了实数运算,正确应用完全平方公式是解题关键.2、C【解析】试题分析:由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=1.故选C.考点:菱形的性质.3、C【解析】解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100)=60+0.8x﹣80=0.8x﹣20,所以,y与x的函数关系为,纵观各选项,只有C选项图形符合.故选C.点睛:本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.4、C【解析】

首先将已知点的坐标代入直线y=x+1求得a的值,然后观察函数图象得到在点P的右边,直线y=x+1都在直线y=mx+n的下方,据此求解.【详解】依题意,得:,解得:a=1,由图象知:于不等式x+1≥mx+n的解集是x≥1此题考查一次函数与一元一次不等式,解题关键在于求得a的值5、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.00000094=9.4×10-1.故选A.6、A【解析】

将点A(m,3)代入y=−x+4得,−m+4=3,解得,m=2,所以点A的坐标为(2,3),由图可知,不等式kx⩾−x+4的解集为x⩾2.故选D本题考查了一次函数和不等式(组)的关系以及数形结合思想的应用.解决此类问题的关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.7、C【解析】

根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【详解】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.8、B【解析】

由已知和旋转的性质可判断A项,进一步可判断C项;利用SAS可证明△AED≌△AEF,可得ED=EF,容易证明△FBE是直角三角形,由此可判断D项和B项,于是可得答案.【详解】解:∵△ADC绕点A顺时针旋转90°得△AFB,∴△ADC≌△AFB,∠FAD=90°,AD=AF,∵∠DAE=45°,∴∠FAE=90°-∠DAE=45°,所以A正确;∴∠DAE=∠FAE,∴平分,所以C正确;∵∴△AED≌△AEF(SAS),∴ED=EF,在Rt△ABC中,∠ABC+∠C=90°,又∵∠C=∠ABF,∴∠ABC+∠ABF=90°,即∠FBE=90°,∴在Rt△FBE中,由勾股定理得:,∴,所以D正确;而BE、CD不一定相等,所以BE、BF不一定相等,所以B不正确.故选B.本题考查了等腰直角三角形的性质、旋转的性质、勾股定理以及全等三角形的判定和性质,解题时注意旋转前后的对应关系.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.10、1.【解析】

根据代表的是平均数,利用平均数的公式即可得出答案.【详解】由题意,可得.故答案为:1.本题主要考查平均数,掌握平均数的公式是解题的关键.11、【解析】

解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为y=﹣.本题考查反比例函数系数k的几何意义.12、2【解析】

先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【详解】因为,△ABC中,∠C=90°,∠A=30°,所以,,因为,DE是中位线,所以,.故答案为2本题考核知识点:直角三角形,三角形中位线.解题关键点:熟记直角三角形性质,三角形中位线性质.13、140°【解析】

由“”可证Rt△ABD≌Rt△ACD,可得,由三角形外角的性质可求的度数.【详解】解:,,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),.故答案为:.本题考查了全等三角形的判定和性质,外角的性质,熟练运用全等三角形的判定是本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)60°;(2)80°;【解析】

(1)先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,得出∠DOC的度数;(2)由(1)即可确定OC的方向.【详解】(1)∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°−60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∴∠DOC=180°−(60°+60°)=60°;(2)由(1)可知OC的方向为:20°+60°=80°,∴射线OC的方向是北偏东80°.此题考查方向角,解题关键在于掌握其定义.15、7【解析】

运用待定系数法求出直线的解析式,然后把x=-2代入解析式求出a的值。【详解】解:(1)设直线的解析式为y=kx+b,把A(-1,5),B(3,-3)代入,

可得:解得:所以直线解析式为:y=-2x+3,

把P(-2,a)代入y=-2x+3中,

得:a=7故答案为:7此题考查一次函数问题,关键是根据待定系数法解解析式.16、(1)饮用水和蔬菜分别为1件和2件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元【解析】试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;(3)分别计算出相应方案,比较即可.试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=1.∴x﹣80=2.答:饮用水和蔬菜分别为1件和2件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤3.∵m为正整数,∴m=2或3或3,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;(3)3种方案的运费分别为:①2×300+6×360=2960(元);②3×300+5×360=3000(元);③3×300+3×360=3030(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.17、(1)16−6;(2)4;.【解析】

(1)利用完全平方公式和平方差公式计算;(2)先分母有理化,再根据零指数幂的意义计算,然后合并即可;【详解】(1)原式=5−6+9+11−9=16−6;(2)原式=+1+3−1=4;此题考查二次根式的混合运算,零指数幂,解题关键在于掌握运算法则.18、【解析】分析:(1)由点A、B的坐标,利用待定系数法求出直线解析式即可;(2)当CD∥AB时,∠CDO=∠ABO,根据tan∠CDO=tan∠ABO列方程求解即可;(3)当EO=DO时,△ECD是等腰三角形,从而可求出t的值.详解:(1)将点A(0,1)、B(1,0)代入y=kx+b中,得:,解得:,∴该直线的解析式为y=-x+1.故答案为:y=-x+1.(2)当直线AB∥CD时,∠CDO=∠ABO,∴tan∠CDO=tan∠ABO∴,解得,.故当时,AB∥CD.(3)存在.事实上,当EO=OD时,△ECD就是等腰三角形,此时,EO=2,OD=1-2t,由,解得,.∴存在时刻T,当时,△ECD是等腰三角形点睛:本题考查了待定系数法求函数解析式、平行线的判定与性质,等腰三角形的判定以及解一元一次方程,解题的关键是:(1)利用待定系数法求出函数解析式;(2)①得出关于t的一元一次方程;②得出关于t的一元一次方程.一、填空题(本大题共5个小题,每小题4分,共20分)19、C(0,-5)【解析】

在Rt△ODC中,利用勾股定理求出OC即可解决问题【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.考点:提公因式法和应用公式法因式分解.21、3cm【解析】【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.【详解】∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC-BF=4,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8-x)2,解得x=3,即CE=3cm,故答案为:3cm.【点睛】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.22、2【解析】

利用二次根式的减法法则计算即可.【详解】解:原式故答案为:本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键.23、【解析】

作BM⊥FC于M,CN⊥AB于N,根据矩形的性质得到BM=CN,再根据直角三角形的性质求出AB,再根据勾股定理求出BC,结合图形即可求解.【详解】作BM⊥FC于M,CN⊥AB于N,∵AB∥CF,∴四边形BMCN是矩形,∠BCM=∠ABC=30°,∴BM=CN,∵∠ACB=90°,∠ABC=30°,∴AB=2AC=4,由勾股定理得BC=∴BM=CN=BC=由勾股定理得CM=∵∠EDF=45°,∴DM=BM=∴CD=CM-DM=此题主要考查矩形的判定与性质,解题的关键是熟知勾股定理、含30°的直角三角形及等腰直角三角形的性质.二、解答题(本大题共3个小题,共30分)24、(1),;(2),.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论