版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年山东省济宁市兖州市九年级数学第一学期开学学业质量监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A. B.C. D.2、(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l3、(4分)如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,连结OE,若AC=12,△OAE的周长为15,则▱ABCD的周长为()A.18 B.27 C.36 D.424、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.5、(4分)下列因式分解正确的是()A.x2﹣y2=(x﹣y)2 B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1) D.2x+y=2(x+y)6、(4分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④7、(4分)下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8、(4分)下列图形中,是轴对称图形,又是中心对称图形的是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若为三角形三边,化简___________.10、(4分)如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.11、(4分)有一组数据:.将这组数据改变为.设这组数据改变前后的方差分别是,则与的大小关系是______________.12、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.13、(4分)如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,在□ABCD中,点E,F在它的内部,且AE=CF,BE=DF,试指出AC与EF的关系,并说明理由.15、(8分)为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;(2)就对抗训练背心的件数讨论去哪家商店买合算?16、(8分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.(1)正方形边长_____________,正方形顶点的坐标为__________________;(2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;(3)当点运动时,点到轴的距离为,求与的函数关系式;(4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.17、(10分).18、(10分)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)阅读下面材料:小明想探究函数的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:x…-3-2-1123…y…2.831.73001.732.83…小聪看了一眼就说:“你画的图象肯定是错误的.”请回答:小聪判断的理由是.请写出函数的一条性质:.20、(4分)如图,已知点A是反比例函数y在第一象限图象上的一个动点,连接OA,以OA为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数y的图象上,则k的值为________.21、(4分)化简,52=______;-52=________;9=22、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______23、(4分)对于实数x我们规定[x]表示不大于x的最大整数,例如[1.8]=1,[7]=7,[﹣5]=﹣5,[﹣2.9]=﹣3,若[]=﹣2,则x的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)25、(10分)用适当的方法解方程:(1)(2)26、(12分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:,实际用时为:.所列方程为:,故选C.本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2、D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.3、C【解析】
根据三角形的中位线定理可得OE=BC,由△OAE的周长为15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得▱ABCD的周长.【详解】∵AE=EB,AO=OC,∴OE=BC,∵AE+AO+EO=15,∴2AE+2AO+2OE=30,∴AB+AC+BC=30,∵AC=12,∴AB+BC=18,∴▱ABCD的周长为18×2=1.故选C.本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是会灵活运用所学知识解决问题.4、B【解析】
根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.【详解】当时,四边形EFGH是矩形,,,,,即,四边形EFGH是矩形;故选:B.此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.5、C【解析】
解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.本题考查因式分解.6、D【解析】试题解析:∵AE=AB,∴BE=2AE,由翻折的性质得,PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③错误;由翻折的性质,∠EFB=∠EFP=30°,∴∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确;综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.7、D【解析】
根据轴对称图形的概念对各图形分析判断后即可得解.【详解】平行四边形不是轴对称图形,矩形是轴对称图形,菱形是轴对称图形,等腰梯形是轴对称图形,正方形是轴对称图形,所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.故选D.此题考查轴对称图形,解题关键在于掌握其定义.8、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,不是中心对称图形,故此选项错误;C.是轴对称图形,也是中心对称图形,故此选项正确;D.不是轴对称图形,是中心对称图形,故此选项错误.故选:C.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(本大题共5个小题,每小题4分,共20分)9、4【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.【详解】∵2,m,4是三角形三边,∴2<m<6,∴m-2>0,m-6<0,∴原式==m-2-(m-6)=4,故答案为:4.此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.10、.【解析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.【详解】如图,将绕着点逆时针旋转,得到,连接,,,,,,,是等边三角形当点,点,点,点共线时,有最小值,故答案为:.本题考查三点共线问题,正确画出辅助线是解题关键.11、【解析】
设数据,,,,的平均数为,根据平均数的定义得出数据,,,,的平均数也为,再利用方差的定义分别求出,,进而比较大小.【详解】解:设数据,,,,的平均数为,则数据,,,,的平均数也为,,,.故答案为.本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、二【解析】
根据各象限内点的坐标特征,可得答案.【详解】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13、x<1【解析】
由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.【详解】由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(1,1),∴当x<1时,有kx+b﹣1>1.故答案为x<1本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、AC与EF互相平分,见解析.【解析】
由题意可证△ABE≌△DCF,可得∠BAE=∠DCF,即可得∠CAE=∠ACF,可证AE∥CF即可证AECF是平行四边形,可得AC与EF的关系.【详解】AC与EF互相平分∵▱ABCD∴AB∥CD,AB=CD∴∠BAC=∠ACD∵AB=CD,AE=CF,BE=DF∴△ABE≌△CDF∴∠BAE=∠FCD且∠BAC=∠ACD∴∠EAC=∠FCA∴CF∥AE且AE=CF∴四边形AECF是平行四边形∴AC与EF互相平分本题考查了平行四边形的性质,全等三角形的判定和性质,证AECF是平行四边形是本题的关键.15、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.【解析】
(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.【详解】(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);(2)y甲=y乙时,1050+15x=13.5x+1080,解得:x=20,即当x=20时,到两店一样合算;y甲>y乙时,1050+15x>13.5x+1080,解得:x>20,即当x>20时,到乙店合算;y甲<y乙时,1050+15x<13.5x+1080,解得:10≤x<20,即当10≤x<20时,到甲店合算.本题考查了一次函数的应用,解答这类问题时,要先建立函数关系式,然后再分类讨论.16、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值为3s或s或s.【解析】
(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.(2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;(3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.【详解】解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所求C点的坐标为(35,2).故答案为30,(35,2)(2)根据题意,易得Q(3,0),点P运动速度每秒钟3个单位长度.故答案为(3,0),3.(3)①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.易知四边形OHKN是矩形,可得OH=KN=5,∵PK∥AH,∴,∴,∴PK=(30﹣t),∴d=PK+KN=﹣t+30.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.同法可得PK=(t﹣30),∴d=PK+KN=t﹣5.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形:当时,△APM与△OPN相似,可得,解得t=3.当时,△APM与△OPN相似,可得,解得t=.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,可得:∠OPN=∠PAM=∠AOP,∵PM⊥OA,∴AM=OM=PN=5,由(3)②可知:5=t﹣5,解得t=.综上所述,拇指条件的t的值为3s或s或s.本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,需要利用参数构建方程解决问题,属于中考压轴题.17、【解析】
先分别根据平方差公式和完全平方公式进行计算,再合并即可.【详解】原式=25-10-2+4-3=10+4此题考查平方差公式和完全平方公式,掌握运算法则是解题关键18、(1)证明见解析;(2)证明见解析;(3)∠GFH=100°.【解析】
(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=BD,FH∥EC,FH=EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【详解】(1)∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=BDFH∥EC,FH=EC∴FG=FH;(2)由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°本题是几何问题,考查了三角形中位线的有关性质,解答时应根据题意找到相应三角形的中位线.一、填空题(本大题共5个小题,每小题4分,共20分)19、如:因为函数值不可能为负,所以在x轴下方不会有图象;当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大【解析】【分析】结合函数解析式y的取值范围可判断图象的大概情况,从函数图象可得出相关信息.【详解】(1).因为,函数值不可能为负,所以在x轴下方不会有图象,所以是错的;(2).根据函数的图象看得出:当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大.故答案为(1).如:因为函数值不可能为负,所以在x轴下方不会有图象;(2).当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大【点睛】本题考核知识点:函数的图象.解题关键点:从函数图象获取信息.20、−3【解析】
设A(a,b),则ab=,分别过A,C作AE⊥x轴于E,CF⊥x轴于F,根据相似三角形的判定证得△AOE∽△COF,由相似三角形的性质得到OF=,CF=,则k=-OF•CF=-3.【详解】设A(a,b),
∴OE=a,AE=b,
∵在反比例函数y=图象上,
∴ab=,
分别过A,C作AE⊥x轴于E,CF⊥x轴于F,
∵矩形AOCB,
∴∠AOE+∠COF=90°,
∴∠OAE=∠COF=90°−∠AOE,
∴△AOE∽△OCF,
∵OC=OA,
∴===,
∴OF=AE=b,CF=OE=a,
∵C在反比例函数y=的图象上,且点C在第四象限,
∴k=−OF⋅CF=−b⋅a=−3ab=−3.本题考查反比例函数图象上点的坐标特征和矩形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和矩形的性质.21、553【解析】
直接利用二次根式的性质化简求出即可.【详解】(5)2=5;(-5)2故答案为:5.;5;3.此题考查二次根式的化简,解题关键在于掌握二次根式的性质.22、4.8.【解析】
矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.【详解】矩形各内角为直角,∴△ABD为直角三角形在直角△ABD中,AB=6,AD=8则BD==10,∵△ABD的面积S=AB⋅AD=BD⋅AE,∴AE==4.8.故答案为4.8.此题考查矩形的性质,解题关键在于运用勾股定理进行计算23、﹣9≤x<﹣1【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南建筑安全员知识题库及答案
- 中国传统文化主题:对联
- 长度与时间的测量课件
- 《电路中的能量转化》课件
- 石油加工原油组成教学课件
- 病理生理学课件凝血和抗凝血平衡紊乱
- 一年级语文下册《语文园地六》课件
- 《心血管急症》课件
- 固定收益点评报告:把握跨年后的信用配置窗口
- 单位管理制度展示大全【职员管理】
- 教练场地技术条件说明
- 代县雁门光伏升压站~宁远220kV线路工程环评报告
- 承诺函(支付宝)
- 蒙特利尔认知评估量表北京版
- 危险化学品目录2023
- GB/T 24123-2009电容器用金属化薄膜
- GB/T 20154-2014低温保存箱
- 艾滋病梅毒乙肝实验室检测
- 固定资产报废管理制度管理办法
- 国铁桥梁人行道支架制作及安装施工要点课件
- 深基坑开挖及支护施工方案-经专家论证
评论
0/150
提交评论