




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorized
r-tm
Measuringwelfare
whenitmattersmost
WORLDBANKGROUP
Atypologyofapproachesforreal-timemonitoring
Contents
Introduction7
1MethodsforNowcastingWelfare—WithaFocusonMonetaryPoverty17
1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates18
ConsiderationsRegardingReliableSurvey-and
Non-survey-basedImputation21
SurveyImputationMethodscanbeComplementedwith
DataCollectiontoDealwithMissingAuxiliaryorBaselineData24
LessonsLearntandResources25
1.2NowcastingWelfareUsingGDPGrowth27
ConsiderationsRegardingGDP-basedNowcasting30
Resources33
1.3NowcastingWelfareUsingMicrosimulationsandGeneral
EquilibriumModels33
ConsiderationsRegardingMicrosimulationandGeneralEquilibrium
Models36
Resources37
2HarnessingDataforReal-timeWelfareMonitoring39
2.1RapidSurveyDataCollection40
High-frequencyPhoneSurveys40
RapidFace-to-faceSurveys46
OnlineandMessaging-basedSurveys49
FurtherResources50
2.2GeospatialData52
MainCharacteristicsandExamples52
CaveatsforUsingGeospatialData56
LessonsLearntandResources59
2.3DigitalTraceData62
MainCharacteristicsandExamples62
CaveatsforUsingDigitalTraceData64
LessonsLearntandResources65
3
2.4AdministrativeData67
MainCharacteristicsandExamples67
CaveatsforAdministrativeDataforReal-timeWelfareMonitoring69
LessonsLearntandResources70
3MovingForward:IdentifyingAreasforAdvancement71
References73
Annex1.SummaryofModelsUsedtoUpdatePovertyEstimates95
Annex2.CommonlyUsedMachineLearning(ML)Modelsfor
EstimatingPoverty97
Annex3.SummaryofAllDataSources100
Annex4.NowcastingImpactsofShocks(Vulnerabilityand
DamageFunctions)103
ConsiderationsRegardingDamageFunctions104
Resources105
4MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Acknowledgments
ThisdraftwaspreparedbyateamfromtheWorldBankPovertyandEquityGlobalPracticeconsistingofKimberlyBolch,MariaEugeniaGenoni,andHenryStemmler.CarlosSabatinoalsoprovidedexcellentinputstothedocument.TheworkwasconductedunderthesupervisionofLuisF.López-Calva(GlobalDirector,PovertyandEquityGP)andBenuBidani(PracticeManager,PovertyandEquityGP).ThisdocumentbenefitedfromconsultationswithmanymembersofthePovertyandEquityGlobalPracticeaswellasotherWorldBankteamswholedthedevelopmentandimplementationofmanyoftheinitiativesreferencedhere.TheteamisparticularlygratefultoMaurizioBussolo,PaulCorral,XimenaDelCarpio,DanielGerszonMahler,CraigHammer,RuthHill,DeanJolliffe,WalkerKosmidou-Bradley,LauraMorenoHerrera,SergioOlivieri,andNobuoYoshidafortheircommentsandadvice.DesignandtypesettingbyReyesWork.
5
Introduction
TimelyInformationonWelfareisCriticalforEffectivePolicymaking
AstheWorldDevelopmentReport2021:DataforBetterLiveshighlights,dataisafoundationalinputforimprovingdevelopmentoutcomesthroughenhancingtheeffectivenessofpolicymaking.However,thedegreetowhichdatacangener-atevaluefordevelopmentdependsonitsquality(WorldBank,2021b).Onecriticalaspectofdataqualityistimeliness.Havingup-to-dateinformationisessentialforpolicymakerstofinetunepoliciesasconditionschange.Inacontemporaryglobalenvironmentmarkedbyheighteneduncertaintyinthefaceofchallengessuchasclimatechange,conflict,andpandemics—theneedformoretimelysourcesofdatatoinformpolicyisparticularlypressing.
Inthecontextofpoliciestoreducepovertyandvulnerability,moretimelyinformationonhouseholdwelfareisneeded.Traditionalmethodsproducemeasuresofhouseholdwelfaretooinfrequentlytomeettheneedsofmanypolicymakers.Officialmeasuresofpovertyarederivedfromhouseholdsurveys,which(eveninidealsettings)areonlyconductedeveryfewyears—giventhefinancialandadministrativecostsinvolved.Inmanysettings,andparticularlyinlow-incomeandfragilecountries,thesesurveysareconductedwithmuchgreaterlags.1However,bycombiningtraditionalsurveys(“baselinedata”)withdifferentmodellingapproachesandalternativesourcesoffrequentlycol-lecteddata(“auxiliarydata”)—itispossibletodevelopmonitoringsystemsthat
1Onaverage,themostrecenthouseholdsurveyintheWorldBank’sPovertyandInequalityPlatform(PIP)isoversixyearsold.Ofthe168countriesinPIP,37percenthavedatathatismorethanfiveyearsoutofdate;ofthe56IDAcountriesinPIP,52percenthavedatathatismorethanfiveyearsoutofdate(September2023PIPUpdate).
7
provideup-to-dateestimatesontheevolutionandstatusofhouseholdwelfare.Investinginthiscapacitytomonitorwelfarein“realtime”isessentialtoboth(i)informnewpolicyactioninthewakeofshocksand(ii)enhancetheadap-tivecapacityofexistingpoliciesascircumstanceschange.Inadditiontoservingasinputstoeffectivepolicymaking,manyoftheapproachesdiscussedcanbeappliedinthecontextofprojectmonitoring.SeeBox1foradiscussiononhowwedefinemonitoringof"welfare"in"realtime".
Methodologicalandtechnologicaladvanceshaveexpandedourabilitytomonitorwelfareinrealtime
Inrecentyears,theWorldBank’sPovertyandEquityGlobalPractice(GP)hasincreaseditscapacitytoprovidemoretimelyinformationonwelfare.Inclosecollaborationwithinternalandexternalpartners,wehaveledeffortsatthecountry(respondingtocontextspecificneeds)andcorporatelevels(relatedtotheglobalmonitoringofpoverty)toimplementabroadrangeofmodellingapproachesandleverageorcollectnewsourcesofhigh-frequencyauxiliarydata.Moreover,thisworkhasincreasinglybenefitedfromfrontiermethodologicalapproaches(forexample,machinelearning)anddatasources(forexample,bigdata)thatcanenhancetheperformanceofexistingmethods.Whileongoingforsometime,theworkwasgreatlyscaledupinthecontextofrecentcrisessuchastheCOVID-19pandemicandclimate-relateddisasters.
Thistypologytakesstockofthegrowingbodyofworkonreal-timewelfaremonitoring,bringingtogetherexistingresourcesandlessonslearnedinoneplace.Itaimstoofferanoverarchingroadmaptohelpteamsnavigatediffer-entapproachesandidentifythebestfitforansweringaspecificquestioninagivencontext.The“bestfit”approachmaydifferacrosssettingsdependingonacountry’sdataecosystemandimplementationconstraints.Thistypologysys-tematizesthedecision-makingprocessbylayingoutthevariousadvantages,disadvantages,underlyingdatarequirements,andassumptionsofdifferentapproaches.WhileprimarilydrawingthePovertyandEquityGP’swork,thetypologyaimstocontextualizereal-timemonitoringwithinabroaderbodyofresearchandtowardsrecentinnovationsinthefield.TheresearchthistypologyhasproducedispartofabroaderglobalinitiativeoftheGPonmoving“TowardsReal-TimeMonitoringofWelfare”andwillbecomplementedbyamoredetailedtechnicalhandbook(forthcoming).
8MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Box1DefiningReal-timeWelfareMonitoring
Whatdowemeanby“realtime”?Thistypologyusestheterm“realtime”torefertoinformationproducedwithashorterlagthantradi-tionalhouseholdsurveysallow.Forwelfaremonitoring,wheresurveygapsoftenspanmultipleyears,dataproducedwithweekly,monthly,orevenyearlyperiodicitymaybeconsidered“realtime.”Thegoalofthevariousapproachesdescribedinthistypologyistoprovidethemostup-to-datewelfareinformationpossible,giventhefeasibilityconstraintsfordoingsoreliably.Itdoesnotnecessarilyimplyinstan-taneousupdates.
Howdowedefine“welfare”?Weusetheterm“welfare”broadlytoencompassmultipledimensionsofwell-being.Thetypologyhigh-lightsexamplesofwelfaremonitoringacrossarangeofdimensionswithafocusonmonitoringmonetarypovertyatthenationallevel,reflectingtheextensiveworkproducedbythePovertyandEquityGPonthisaspectofwell-being.
Monetarypovertyisastateofdeprivationcharacterizedbyalackofsufficientincomeorfinancialresourcestomeetbasicneeds,suchasfood,shelter,clothing,andhealthcare.Itistypicallymeasuredbycom-paringanindividual’sorhousehold’sincomeorconsumptionagainstadefinedpovertythresholdorpovertyline,withthosebelowthethresholdconsideredmonetarilypoor.
Monetarypovertymeasurementisdataintensiveandchallengingindata-deprivedcontexts.Insomecases,directlymeasuringotherdimensionsofwelfare(forexample,foodsecurity,employment,hous-ing,education)maybeeasierandequallyinsightfulforunderstandingchangesinindividualwell-being.
9|IntroductIon
Part1:Methods
Analyticalmodelsto
leveragemicro,macro,andbigdatatoupdatepovertyandotherwelfaremeasures
ATypologyinTwoParts:MethodsandData
Thistypologyisorganizedintwoparts.Thefirstpartfocusesonmethods,map-pingoutanalyticalmodelsthatleveragemicro,macro,andbigdatatonowcastpovertyandotherwelfaremeasures.Thesecondpartfocusesondata,listingoptionstocollecthigh-frequencydataorbetterharnessexistingsources.Mostapproachesrequireastrategiccombinationofboth—withmodelsrequiringhigh-frequencydataasakeyinput(Figure1).
Figure1Real-timewelfaremonitoringrequiresacombinationofmodelingandhigh-frequencydata
Part2:Data
Effortsforthecollectionofnewdataandbetterharnessingofexistingdata
Notably,mostapproachesrelyonhavingrecentbaselinedataasaprecondi-tion(Box2).Inthissense,theseapproachesarenotmeanttobeasubstituteforinvestingintraditionalsurveys(suchashouseholdbudgetsurveysorcensuses);infact,havingarelativelyrecentbaselinesurveyisacriticalinputtoensurethequalityandaccuracyofthemodelinganddatacollectionmethodscoveredinthistypology.Whenthisisnotthecase,thefeasibilityofreal-timemonitoringmaybelimited,andthecollectionofnewbaselinedatamayberequired.
10MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
Box2BuildingonaStrongFoundation:BaselineDataisaPrerequisiteforReal-timeMonitoring
Methodsforimputingpovertyandhigh-frequency“auxiliarydata”arenotyetsubstitutesfortraditionalhouseholdsurveys,whichremainthefoundationofreliablewelfareestimates.Afullsurveywithcom-prehensivewelfareinformation(suchasahouseholdbudgetsurvey)orpopulationinformation(suchasacensus)isoftenaprerequisitetoeffectivelyapplytheapproachesdescribedhere.
Figure2showshowtothinkaboutthesedifferentdatasetsandhowtheytogetherfeedintomodelstomonitorwelfareinreal-time.Thistypologyreferstothisfoundationaldataas“baselinedata.”However,inthelanguageofmachinelearningitcanalsobethoughtofas“train-ingdata.”Trainingdataservesapivotalrole,providingtheunderlyinginformationnecessaryformodelstolearnpatterns,classifydata,andmakepredictions.Thequalityandquantityoftrainingdatasignifi-cantlyimpactstheperformanceandaccuracyofthealgorithm.Iftrain-ingdataonwelfareisnon-existentortoooutofdate,thesemethodswillbeunreliable.
Themethodsanddatasourcesdiscussedinthistypologyshouldbeseenascomplementarytoratherthansubstitutesfortraditionalsur-veys.Assuch,effortstoadvancethereal-timemonitoringofwelfaregreatlydependoncontinuedinvestmentsinclosingfoundationaldatagaps.TheWorldBankhaslongbeenworkingwithcountrypartnerstoinvestinthemodernizationofnationalstatisticalsystems.Atthegloballevel,thisworkisbeingledbytheGlobalSolutionsGrouponDataforPolicy.Thisincludesanimportantefforttoclosepoverty-relateddatagaps,includingthroughtheimplementationofmorefrequenthouse-holdsurveys.Whilemuchprogresshasbeenmadeinrecentyears,thereisstillalongwaytogo.
11|IntroductIon
Figure2Theingredientsforreal-timewelfaremonitoring
Surveyornon-surveyimputation
Anothermicrosurvey
(LFS,DHS,specially
collectedsurvey)
Macrodata(e.g.,GDP)
Bigdata(e.g.,geospatial,admin,digitaltrace)
collecteddatawithwelfareinformation)
Baselinedata
Datawithwelfare
information(e.g.,budgetsurveyorspecially
GDP-growthmodelsMicrosimulations
Auxiliarydata
Model
PartI:Methods
Thisportionofthetypologyprovidesanoverviewofvarioustypesofmethodsthatcanbeusedtoimputeorpredictwelfarein“realtime”.Thesemethodsuti-lizetimelyinformationfrom“auxiliarydata”sources(suchasmicrosurveys,mac-roeconomicstatistics,orotherbigdatasources)andmodelrelationshipswithvariablesinolderbaselinedatatoestimatemissingdatapoints.
Figure3providesanoverviewofmethodsofreal-timemonitoringfordiffer-entusecases.Themaintypesofmethodsdiscussedinthistypologyarecovari-ate-basednowcasting,GDP-basednowcasting,andmicrosimulationmodels.Researchershaveallthesemethodsattheirdisposalwhentheobjectiveistoobtainanupdatedpoverty-ratenowcast.GDP-basednowcastingneedstobemodifiedtocapturedifferencesacrossincomedistribution,whiletheothermethodsincorporatedistributionsensitivenowcasts.Whenresearchersaimtoincorporatedifferentmechanismsandindirecteffects,theyneedtorelyonmicrosimulationmodels.Finally,microsimulationmodelsandrelatedvulner-abilityfunctionsareusefulforupdatingestimatestoaccountfortheimpactsofshocks.Covariate-basednowcastingcanalsoprovideestimatesofshock
12MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
impacts,buttypicallyonlywhencombinedwithdatacollectionefforts,whicharediscussedinfurtherdetailinpart2ofthistypology.
Figure3Methodsforreal-timemonitoringfordifferentusecases
UsecaseMethods
Distribution-
Poverty-ratenowcast
GDP-poverty
elasticity
(section1.2)
Covariate-basednowcasting(section1.1)
scaling
(section1.2)
Micro-simulation
(section1.3)
Estimatesalongtheincomedistribution
Canincorporateassumptionsaboutdistributionalchanges
Incorporateand
understandmecha-
nismsorindirecteffects
Vulnerability
analysis
(Appendix4)
Collectionofex-postdata (section2.1)
Nowcastingchangesinwelfareaftershocks
Harnessingdata(section2)
Monitorproxyorleadingindicatorsforwelfare
Ultimately,choosingbetweenthevariousmethodswilldependontheusecaseandtoalargeextentontheunderlyingdatarequirementsandthescaleofanalysis(forexample,subnational,national,regional,global).Moreover,implementingthesemethodsrequiresdifferentinputsintermsofskills,time,andfinancialresources.Dependingontheconstraintsthatateamfacesinagivencontext,differentapproachesmaybebettersuitedtotherealitiesontheground.Thistypologyfeaturesseveraldecisiontreestohelpusersthinkthroughwhichmethod(s)arebettersuitedtodifferentcontextsandobjectives.
PartII:Data
Thetimelinessofwelfareestimatesproducedbythemethodsdependsentirelyonthetimelinessoftheauxiliarydatainputs.Reliable,high-frequencyandup-to-datedatasourcesarecriticalforanyapproachtomonitorwelfareinrealtime.PartIIofthistypologyfocusesontwokeyefforts:(i)collectingnewhigh-fre-quencydata,and(ii)betterharnessingexistingsourcesofhigh-frequencydata(Figure4illustratesafewexamples).
13|IntroductIon
Figure4Dataforreal-timemonitoring:Collectingandharnessinghigh-frequencydata
CollectingNewData
ExistingData
Sources
Rapid
surveys
Geospatialdata
Digital
tracedata
Administrativedata
•Phone
•Face-to-Face
•Onlineand
messaging-based
•Satelliteimagery
•Nighttimelights
•Vegetationindices
•Calldetailrecords
•Socialmediadata
•Taxdata
•Barcodescannerdata
•Socialregistries
Thesemorefrontiertypesofdatasourcescanbeleveragedinseveralwaysforreal-timemonitoring.First,theycancomplementexistingbaselinesurveydataasaninputtoimprovethenowcastingmethodsdiscussedabove.Thiscanbepar-ticularlyusefulwhenexistingsurveydataisnotrecent,doesnotcoverthewholepopulation,orlacksspecificdimensionsthatarerelevantforwelfareestimation.Second,theycanofferabroaderpictureonwelfarewhendataconstraintslimitthefeasibilityofestimatingmonetarywelfare.Inmanycases,other(non-mon-etary)measuresareveryinformativeindepictingwelfaretrendsordifferencesbetweenpopulations.Variablessuchasemployment,foodsecurity,orsubjectivewell-beingmaybeavailablefromothersourcesorcanbecollectedmoreeasilythanfullinformationonincomeorconsumption.Third,leadingindicators,suchaspredictionsofdroughtsorfloodsorinflationdata,canprovideimportantsig-nalsofchangesinwelfare,beforetheseareobservableinsurveydata.TheselasttwousecasesaresummarizedbythelastrowofFigure3.
Selectingthebest-fitapproach
Thistypologyisnotmeanttobeprescriptivenordoesitrankapproaches.Rather,itseekstoprovideamorestructuredwaytohelpusersidentifyacoresetofavailableoptionsandsystematicallythinkthroughthetrade-offs
14MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring
betweenthem.Eachapproachcoveredinthetypologyincludesadiscussiononthemaincharacteristics,caveats,andlessonslearned—alongsideacollectionofresources.Thebest-fitapproachinonecontextmaynotalwaystranslatesuccess-fullyinanother.Inallcases,itwillbecriticaltokeepinmindthecorepolicyques-tiondrivingtheanalysisaswellasthebroadrangeofdataecosystemsinwhichuserswillbeseekingtoapplythesemethods,rangingfromstablesettingsrichinfrequentbaselineandauxiliarydatatofragileandconflict-affectedsettingswithverylimiteddatainputsandhighimplementationconstraints.
15|IntroductIon
1.
MethodsforNowcastingWelfare—WithaFocus
onMonetaryPoverty
Nowcastingandimputationmethodsleveragebaselinedatathatcontainsadirectmeasureofwelfareandmorerecentauxiliarydatasourceswithwhichwelfareisimputed.Thebaselinedataprovidesthefoundationoftheanalysis,con-tainingvariableswithwhichwelfarecanbeestimated(forexample,fromahouse-holdsurvey).Auxiliarydatasourcesvary;somemodelsmakeuseofhouseholdmicrodatasuchaslaborforce,census,demographicandhealth,orspeciallycol-lectedhouseholdsurveys;othersrelyonmoreeconomy-widedatasuchascurrentGDPorFinalConsumptionExpenditurenumbers.Somemethodsalsousebigdatasourcessuchasgeospatialorcalldetailrecorddata.Still,almostallthesemethodsneedthebaselineinformationtounderstandhowtheseauxiliaryvariablesrelatetowelfareorrequirebaselineincomedistributionstomakeinferencesaboutchangesinwelfare.
Inthefollowing,severaldifferentmethodsofestimatingwelfareandpovertyaredescribedinmoredetail,withspecificguidanceonadvantagesanddisad-vantages,andexampleusecasesandlinkstofurtherresourcesareprovided.
Annex1providesasummaryofthedifferentmethods,whicharediscussedinthistypology,includingrequirementsforthemethodtoaccuratelyestimatewelfareindicatorsandwhatlimitationsthemethodhas.
Beforewemoveon,itisimportanttonotethatallmodelsdescribednextrelyonimportantassumptionsthatneedtobeassessedandpossiblyvalidatedineachcontext.Whenfeasible,itisrecommendedtorundifferentoptionstocom-pareresults.Triangulationoffindingswithotherexternalsourcesofinformationisalsoadvisable.Finally,allmethodshaveerrors,andwhereverpossible,confi-denceintervalsshouldbereportedwiththeresults.
17
1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates
Surveyandnon-survey-basedimputationmethods(covariate-basednowcasting)modeltherelationshipbetweenconsumptionorincomeandothercovariatestonowcastpoverty.Survey-to-surveyimputationmethodsdrawupondistributionsofconsumption(orincome)variablesandothercovari-atesfromabaselinesurveytonowcastconsumption(orincome)levelsusingarecentauxiliarysurvey,whichitselfdoesnotholdconsumptionvariables.Non-survey-basedimputationdrawsuponinformationfromnon-surveyauxil-iarydata,suchasremotely-sensedgeospatialdata.Thesevariablescaneitherbeusedtoimprovesurvey-basedmodelsortoindependentlyformimputationmodels.
Whileimputationacrossspacehasreceivedconsiderableattention,advance-mentsinsurvey-basedimputationofwelfareovertimearestillrecent.Hentscheletal.(1998)andElbers,Lanjouw,andLanjouw(2003)initiatedawaveofresearchwithinandoutsideoftheWorldBanktoadaptimputationmethodstoestimatemonetarypovertyforpovertymapping.Theseimputationmodelshavebeenwidelyusedtogeneratespatiallydisaggregatedwelfareinformation.23Morerecentworkisexploringwaystoadaptthesemodelstoupdatewelfareacrosstime.
Mostcommonly,linearregressionmodelsareusedtoimputeconsumptionandexpenditurevariables.Surveyandnon-survey-basedimputationmodelsalsoinvolvestatisticalapproacheslikehot-deckimputationandmultipleimpu-tation(MI),whichaimtoreducenonresponsebiasandimprovetheoverallrep-resentativenessandqualityofsurveydata.4Somestudiesestimateapooror
2Formoreinformationaboutimputationmethodsacrossspace,seeforinstance
Corraletal.(2022)
,StifelandChristiaensen(2007),Tarozzi(2007),Christiaensen(2012),Mathiassen(2013),orthereport“
MoreThanaPrettyPicture:UsingPovertyMapstoDesignBetterPoliciesandInterventions
.”
3Survey-to-surveyimputationcanalsobeusefulforotherapplicationsbeyondupdatingormappingmonetarypoverty,suchasensuringcomparabilityofconsumptionovertimeorimputingnon-mone-tarywelfaremetrics.Evenwhensurveysareavailable,changesinpovertylinesorconsumptionmod-ulescanhindercomparisonsofpovertyovertime.Survey-to-surveyimputationhasalsobeenusedtorestorecomparabilityin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绥化学院《理解艺术B:国舞集萃进阶》2023-2024学年第一学期期末试卷
- 中华女子学院《统计与数据分析方法》2023-2024学年第二学期期末试卷
- 护理查房:肝性脑病
- 海南科技职业大学《生物工程设备》2023-2024学年第二学期期末试卷
- 广州卫生职业技术学院《资源与环境遥感》2023-2024学年第二学期期末试卷
- 护理带教老师说课
- 护理安全分析课件
- 煤炭出口英文合同范本
- 《生活垃圾的研究》(教学设计)长春版四年级下册综合实践活动
- 定制产品电子合同范本
- 7.2做中华人文精神的弘扬者 教学设计-2024-2025学年统编版道德与法治七年级下册
- 思想政治学科教学新论课后习题第二版刘强
- 2022年《国民经济行业分类》
- OTN传输项目交付实施计划方案
- 固定顶、外浮顶和内浮顶储罐
- 千牛工作台操作图解PPT课件
- 铁路货车制动管系法兰用E形密封圈技术条件
- IH型化工离心泵设计
- 教师问责制度
- 最新空白办健康证用工证明1页
- 卫生院公共卫生工作计划
评论
0/150
提交评论