衡量最重要的福利_第1页
衡量最重要的福利_第2页
衡量最重要的福利_第3页
衡量最重要的福利_第4页
衡量最重要的福利_第5页
已阅读5页,还剩202页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorizedPublicDisclosureAuthorized

r-tm

Measuringwelfare

whenitmattersmost

WORLDBANKGROUP

Atypologyofapproachesforreal-timemonitoring

Contents

Introduction7

1MethodsforNowcastingWelfare—WithaFocusonMonetaryPoverty17

1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates18

ConsiderationsRegardingReliableSurvey-and

Non-survey-basedImputation21

SurveyImputationMethodscanbeComplementedwith

DataCollectiontoDealwithMissingAuxiliaryorBaselineData24

LessonsLearntandResources25

1.2NowcastingWelfareUsingGDPGrowth27

ConsiderationsRegardingGDP-basedNowcasting30

Resources33

1.3NowcastingWelfareUsingMicrosimulationsandGeneral

EquilibriumModels33

ConsiderationsRegardingMicrosimulationandGeneralEquilibrium

Models36

Resources37

2HarnessingDataforReal-timeWelfareMonitoring39

2.1RapidSurveyDataCollection40

High-frequencyPhoneSurveys40

RapidFace-to-faceSurveys46

OnlineandMessaging-basedSurveys49

FurtherResources50

2.2GeospatialData52

MainCharacteristicsandExamples52

CaveatsforUsingGeospatialData56

LessonsLearntandResources59

2.3DigitalTraceData62

MainCharacteristicsandExamples62

CaveatsforUsingDigitalTraceData64

LessonsLearntandResources65

3

2.4AdministrativeData67

MainCharacteristicsandExamples67

CaveatsforAdministrativeDataforReal-timeWelfareMonitoring69

LessonsLearntandResources70

3MovingForward:IdentifyingAreasforAdvancement71

References73

Annex1.SummaryofModelsUsedtoUpdatePovertyEstimates95

Annex2.CommonlyUsedMachineLearning(ML)Modelsfor

EstimatingPoverty97

Annex3.SummaryofAllDataSources100

Annex4.NowcastingImpactsofShocks(Vulnerabilityand

DamageFunctions)103

ConsiderationsRegardingDamageFunctions104

Resources105

4MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring

Acknowledgments

ThisdraftwaspreparedbyateamfromtheWorldBankPovertyandEquityGlobalPracticeconsistingofKimberlyBolch,MariaEugeniaGenoni,andHenryStemmler.CarlosSabatinoalsoprovidedexcellentinputstothedocument.TheworkwasconductedunderthesupervisionofLuisF.López-Calva(GlobalDirector,PovertyandEquityGP)andBenuBidani(PracticeManager,PovertyandEquityGP).ThisdocumentbenefitedfromconsultationswithmanymembersofthePovertyandEquityGlobalPracticeaswellasotherWorldBankteamswholedthedevelopmentandimplementationofmanyoftheinitiativesreferencedhere.TheteamisparticularlygratefultoMaurizioBussolo,PaulCorral,XimenaDelCarpio,DanielGerszonMahler,CraigHammer,RuthHill,DeanJolliffe,WalkerKosmidou-Bradley,LauraMorenoHerrera,SergioOlivieri,andNobuoYoshidafortheircommentsandadvice.DesignandtypesettingbyReyesWork.

5

Introduction

TimelyInformationonWelfareisCriticalforEffectivePolicymaking

AstheWorldDevelopmentReport2021:DataforBetterLiveshighlights,dataisafoundationalinputforimprovingdevelopmentoutcomesthroughenhancingtheeffectivenessofpolicymaking.However,thedegreetowhichdatacangener-atevaluefordevelopmentdependsonitsquality(WorldBank,2021b).Onecriticalaspectofdataqualityistimeliness.Havingup-to-dateinformationisessentialforpolicymakerstofinetunepoliciesasconditionschange.Inacontemporaryglobalenvironmentmarkedbyheighteneduncertaintyinthefaceofchallengessuchasclimatechange,conflict,andpandemics—theneedformoretimelysourcesofdatatoinformpolicyisparticularlypressing.

Inthecontextofpoliciestoreducepovertyandvulnerability,moretimelyinformationonhouseholdwelfareisneeded.Traditionalmethodsproducemeasuresofhouseholdwelfaretooinfrequentlytomeettheneedsofmanypolicymakers.Officialmeasuresofpovertyarederivedfromhouseholdsurveys,which(eveninidealsettings)areonlyconductedeveryfewyears—giventhefinancialandadministrativecostsinvolved.Inmanysettings,andparticularlyinlow-incomeandfragilecountries,thesesurveysareconductedwithmuchgreaterlags.1However,bycombiningtraditionalsurveys(“baselinedata”)withdifferentmodellingapproachesandalternativesourcesoffrequentlycol-lecteddata(“auxiliarydata”)—itispossibletodevelopmonitoringsystemsthat

1Onaverage,themostrecenthouseholdsurveyintheWorldBank’sPovertyandInequalityPlatform(PIP)isoversixyearsold.Ofthe168countriesinPIP,37percenthavedatathatismorethanfiveyearsoutofdate;ofthe56IDAcountriesinPIP,52percenthavedatathatismorethanfiveyearsoutofdate(September2023PIPUpdate).

7

provideup-to-dateestimatesontheevolutionandstatusofhouseholdwelfare.Investinginthiscapacitytomonitorwelfarein“realtime”isessentialtoboth(i)informnewpolicyactioninthewakeofshocksand(ii)enhancetheadap-tivecapacityofexistingpoliciesascircumstanceschange.Inadditiontoservingasinputstoeffectivepolicymaking,manyoftheapproachesdiscussedcanbeappliedinthecontextofprojectmonitoring.SeeBox1foradiscussiononhowwedefinemonitoringof"welfare"in"realtime".

Methodologicalandtechnologicaladvanceshaveexpandedourabilitytomonitorwelfareinrealtime

Inrecentyears,theWorldBank’sPovertyandEquityGlobalPractice(GP)hasincreaseditscapacitytoprovidemoretimelyinformationonwelfare.Inclosecollaborationwithinternalandexternalpartners,wehaveledeffortsatthecountry(respondingtocontextspecificneeds)andcorporatelevels(relatedtotheglobalmonitoringofpoverty)toimplementabroadrangeofmodellingapproachesandleverageorcollectnewsourcesofhigh-frequencyauxiliarydata.Moreover,thisworkhasincreasinglybenefitedfromfrontiermethodologicalapproaches(forexample,machinelearning)anddatasources(forexample,bigdata)thatcanenhancetheperformanceofexistingmethods.Whileongoingforsometime,theworkwasgreatlyscaledupinthecontextofrecentcrisessuchastheCOVID-19pandemicandclimate-relateddisasters.

Thistypologytakesstockofthegrowingbodyofworkonreal-timewelfaremonitoring,bringingtogetherexistingresourcesandlessonslearnedinoneplace.Itaimstoofferanoverarchingroadmaptohelpteamsnavigatediffer-entapproachesandidentifythebestfitforansweringaspecificquestioninagivencontext.The“bestfit”approachmaydifferacrosssettingsdependingonacountry’sdataecosystemandimplementationconstraints.Thistypologysys-tematizesthedecision-makingprocessbylayingoutthevariousadvantages,disadvantages,underlyingdatarequirements,andassumptionsofdifferentapproaches.WhileprimarilydrawingthePovertyandEquityGP’swork,thetypologyaimstocontextualizereal-timemonitoringwithinabroaderbodyofresearchandtowardsrecentinnovationsinthefield.TheresearchthistypologyhasproducedispartofabroaderglobalinitiativeoftheGPonmoving“TowardsReal-TimeMonitoringofWelfare”andwillbecomplementedbyamoredetailedtechnicalhandbook(forthcoming).

8MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring

Box1DefiningReal-timeWelfareMonitoring

Whatdowemeanby“realtime”?Thistypologyusestheterm“realtime”torefertoinformationproducedwithashorterlagthantradi-tionalhouseholdsurveysallow.Forwelfaremonitoring,wheresurveygapsoftenspanmultipleyears,dataproducedwithweekly,monthly,orevenyearlyperiodicitymaybeconsidered“realtime.”Thegoalofthevariousapproachesdescribedinthistypologyistoprovidethemostup-to-datewelfareinformationpossible,giventhefeasibilityconstraintsfordoingsoreliably.Itdoesnotnecessarilyimplyinstan-taneousupdates.

Howdowedefine“welfare”?Weusetheterm“welfare”broadlytoencompassmultipledimensionsofwell-being.Thetypologyhigh-lightsexamplesofwelfaremonitoringacrossarangeofdimensionswithafocusonmonitoringmonetarypovertyatthenationallevel,reflectingtheextensiveworkproducedbythePovertyandEquityGPonthisaspectofwell-being.

Monetarypovertyisastateofdeprivationcharacterizedbyalackofsufficientincomeorfinancialresourcestomeetbasicneeds,suchasfood,shelter,clothing,andhealthcare.Itistypicallymeasuredbycom-paringanindividual’sorhousehold’sincomeorconsumptionagainstadefinedpovertythresholdorpovertyline,withthosebelowthethresholdconsideredmonetarilypoor.

Monetarypovertymeasurementisdataintensiveandchallengingindata-deprivedcontexts.Insomecases,directlymeasuringotherdimensionsofwelfare(forexample,foodsecurity,employment,hous-ing,education)maybeeasierandequallyinsightfulforunderstandingchangesinindividualwell-being.

9|IntroductIon

Part1:Methods

Analyticalmodelsto

leveragemicro,macro,andbigdatatoupdatepovertyandotherwelfaremeasures

ATypologyinTwoParts:MethodsandData

Thistypologyisorganizedintwoparts.Thefirstpartfocusesonmethods,map-pingoutanalyticalmodelsthatleveragemicro,macro,andbigdatatonowcastpovertyandotherwelfaremeasures.Thesecondpartfocusesondata,listingoptionstocollecthigh-frequencydataorbetterharnessexistingsources.Mostapproachesrequireastrategiccombinationofboth—withmodelsrequiringhigh-frequencydataasakeyinput(Figure1).

Figure1Real-timewelfaremonitoringrequiresacombinationofmodelingandhigh-frequencydata

Part2:Data

Effortsforthecollectionofnewdataandbetterharnessingofexistingdata

Notably,mostapproachesrelyonhavingrecentbaselinedataasaprecondi-tion(Box2).Inthissense,theseapproachesarenotmeanttobeasubstituteforinvestingintraditionalsurveys(suchashouseholdbudgetsurveysorcensuses);infact,havingarelativelyrecentbaselinesurveyisacriticalinputtoensurethequalityandaccuracyofthemodelinganddatacollectionmethodscoveredinthistypology.Whenthisisnotthecase,thefeasibilityofreal-timemonitoringmaybelimited,andthecollectionofnewbaselinedatamayberequired.

10MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring

Box2BuildingonaStrongFoundation:BaselineDataisaPrerequisiteforReal-timeMonitoring

Methodsforimputingpovertyandhigh-frequency“auxiliarydata”arenotyetsubstitutesfortraditionalhouseholdsurveys,whichremainthefoundationofreliablewelfareestimates.Afullsurveywithcom-prehensivewelfareinformation(suchasahouseholdbudgetsurvey)orpopulationinformation(suchasacensus)isoftenaprerequisitetoeffectivelyapplytheapproachesdescribedhere.

Figure2showshowtothinkaboutthesedifferentdatasetsandhowtheytogetherfeedintomodelstomonitorwelfareinreal-time.Thistypologyreferstothisfoundationaldataas“baselinedata.”However,inthelanguageofmachinelearningitcanalsobethoughtofas“train-ingdata.”Trainingdataservesapivotalrole,providingtheunderlyinginformationnecessaryformodelstolearnpatterns,classifydata,andmakepredictions.Thequalityandquantityoftrainingdatasignifi-cantlyimpactstheperformanceandaccuracyofthealgorithm.Iftrain-ingdataonwelfareisnon-existentortoooutofdate,thesemethodswillbeunreliable.

Themethodsanddatasourcesdiscussedinthistypologyshouldbeseenascomplementarytoratherthansubstitutesfortraditionalsur-veys.Assuch,effortstoadvancethereal-timemonitoringofwelfaregreatlydependoncontinuedinvestmentsinclosingfoundationaldatagaps.TheWorldBankhaslongbeenworkingwithcountrypartnerstoinvestinthemodernizationofnationalstatisticalsystems.Atthegloballevel,thisworkisbeingledbytheGlobalSolutionsGrouponDataforPolicy.Thisincludesanimportantefforttoclosepoverty-relateddatagaps,includingthroughtheimplementationofmorefrequenthouse-holdsurveys.Whilemuchprogresshasbeenmadeinrecentyears,thereisstillalongwaytogo.

11|IntroductIon

Figure2Theingredientsforreal-timewelfaremonitoring

Surveyornon-surveyimputation

Anothermicrosurvey

(LFS,DHS,specially

collectedsurvey)

Macrodata(e.g.,GDP)

Bigdata(e.g.,geospatial,admin,digitaltrace)

collecteddatawithwelfareinformation)

Baselinedata

Datawithwelfare

information(e.g.,budgetsurveyorspecially

GDP-growthmodelsMicrosimulations

Auxiliarydata

Model

PartI:Methods

Thisportionofthetypologyprovidesanoverviewofvarioustypesofmethodsthatcanbeusedtoimputeorpredictwelfarein“realtime”.Thesemethodsuti-lizetimelyinformationfrom“auxiliarydata”sources(suchasmicrosurveys,mac-roeconomicstatistics,orotherbigdatasources)andmodelrelationshipswithvariablesinolderbaselinedatatoestimatemissingdatapoints.

Figure3providesanoverviewofmethodsofreal-timemonitoringfordiffer-entusecases.Themaintypesofmethodsdiscussedinthistypologyarecovari-ate-basednowcasting,GDP-basednowcasting,andmicrosimulationmodels.Researchershaveallthesemethodsattheirdisposalwhentheobjectiveistoobtainanupdatedpoverty-ratenowcast.GDP-basednowcastingneedstobemodifiedtocapturedifferencesacrossincomedistribution,whiletheothermethodsincorporatedistributionsensitivenowcasts.Whenresearchersaimtoincorporatedifferentmechanismsandindirecteffects,theyneedtorelyonmicrosimulationmodels.Finally,microsimulationmodelsandrelatedvulner-abilityfunctionsareusefulforupdatingestimatestoaccountfortheimpactsofshocks.Covariate-basednowcastingcanalsoprovideestimatesofshock

12MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring

impacts,buttypicallyonlywhencombinedwithdatacollectionefforts,whicharediscussedinfurtherdetailinpart2ofthistypology.

Figure3Methodsforreal-timemonitoringfordifferentusecases

UsecaseMethods

Distribution-

Poverty-ratenowcast

GDP-poverty

elasticity

(section1.2)

Covariate-basednowcasting(section1.1)

scaling

(section1.2)

Micro-simulation

(section1.3)

Estimatesalongtheincomedistribution

Canincorporateassumptionsaboutdistributionalchanges

Incorporateand

understandmecha-

nismsorindirecteffects

Vulnerability

analysis

(Appendix4)

Collectionofex-postdata (section2.1)

Nowcastingchangesinwelfareaftershocks

Harnessingdata(section2)

Monitorproxyorleadingindicatorsforwelfare

Ultimately,choosingbetweenthevariousmethodswilldependontheusecaseandtoalargeextentontheunderlyingdatarequirementsandthescaleofanalysis(forexample,subnational,national,regional,global).Moreover,implementingthesemethodsrequiresdifferentinputsintermsofskills,time,andfinancialresources.Dependingontheconstraintsthatateamfacesinagivencontext,differentapproachesmaybebettersuitedtotherealitiesontheground.Thistypologyfeaturesseveraldecisiontreestohelpusersthinkthroughwhichmethod(s)arebettersuitedtodifferentcontextsandobjectives.

PartII:Data

Thetimelinessofwelfareestimatesproducedbythemethodsdependsentirelyonthetimelinessoftheauxiliarydatainputs.Reliable,high-frequencyandup-to-datedatasourcesarecriticalforanyapproachtomonitorwelfareinrealtime.PartIIofthistypologyfocusesontwokeyefforts:(i)collectingnewhigh-fre-quencydata,and(ii)betterharnessingexistingsourcesofhigh-frequencydata(Figure4illustratesafewexamples).

13|IntroductIon

Figure4Dataforreal-timemonitoring:Collectingandharnessinghigh-frequencydata

CollectingNewData

ExistingData

Sources

Rapid

surveys

Geospatialdata

Digital

tracedata

Administrativedata

•Phone

•Face-to-Face

•Onlineand

messaging-based

•Satelliteimagery

•Nighttimelights

•Vegetationindices

•Calldetailrecords

•Socialmediadata

•Taxdata

•Barcodescannerdata

•Socialregistries

Thesemorefrontiertypesofdatasourcescanbeleveragedinseveralwaysforreal-timemonitoring.First,theycancomplementexistingbaselinesurveydataasaninputtoimprovethenowcastingmethodsdiscussedabove.Thiscanbepar-ticularlyusefulwhenexistingsurveydataisnotrecent,doesnotcoverthewholepopulation,orlacksspecificdimensionsthatarerelevantforwelfareestimation.Second,theycanofferabroaderpictureonwelfarewhendataconstraintslimitthefeasibilityofestimatingmonetarywelfare.Inmanycases,other(non-mon-etary)measuresareveryinformativeindepictingwelfaretrendsordifferencesbetweenpopulations.Variablessuchasemployment,foodsecurity,orsubjectivewell-beingmaybeavailablefromothersourcesorcanbecollectedmoreeasilythanfullinformationonincomeorconsumption.Third,leadingindicators,suchaspredictionsofdroughtsorfloodsorinflationdata,canprovideimportantsig-nalsofchangesinwelfare,beforetheseareobservableinsurveydata.TheselasttwousecasesaresummarizedbythelastrowofFigure3.

Selectingthebest-fitapproach

Thistypologyisnotmeanttobeprescriptivenordoesitrankapproaches.Rather,itseekstoprovideamorestructuredwaytohelpusersidentifyacoresetofavailableoptionsandsystematicallythinkthroughthetrade-offs

14MEASURINGWELFAREWHENITMATTERSMOST—ATypologyofApproachesforReal-timeMonitoring

betweenthem.Eachapproachcoveredinthetypologyincludesadiscussiononthemaincharacteristics,caveats,andlessonslearned—alongsideacollectionofresources.Thebest-fitapproachinonecontextmaynotalwaystranslatesuccess-fullyinanother.Inallcases,itwillbecriticaltokeepinmindthecorepolicyques-tiondrivingtheanalysisaswellasthebroadrangeofdataecosystemsinwhichuserswillbeseekingtoapplythesemethods,rangingfromstablesettingsrichinfrequentbaselineandauxiliarydatatofragileandconflict-affectedsettingswithverylimiteddatainputsandhighimplementationconstraints.

15|IntroductIon

1.

MethodsforNowcastingWelfare—WithaFocus

onMonetaryPoverty

Nowcastingandimputationmethodsleveragebaselinedatathatcontainsadirectmeasureofwelfareandmorerecentauxiliarydatasourceswithwhichwelfareisimputed.Thebaselinedataprovidesthefoundationoftheanalysis,con-tainingvariableswithwhichwelfarecanbeestimated(forexample,fromahouse-holdsurvey).Auxiliarydatasourcesvary;somemodelsmakeuseofhouseholdmicrodatasuchaslaborforce,census,demographicandhealth,orspeciallycol-lectedhouseholdsurveys;othersrelyonmoreeconomy-widedatasuchascurrentGDPorFinalConsumptionExpenditurenumbers.Somemethodsalsousebigdatasourcessuchasgeospatialorcalldetailrecorddata.Still,almostallthesemethodsneedthebaselineinformationtounderstandhowtheseauxiliaryvariablesrelatetowelfareorrequirebaselineincomedistributionstomakeinferencesaboutchangesinwelfare.

Inthefollowing,severaldifferentmethodsofestimatingwelfareandpovertyaredescribedinmoredetail,withspecificguidanceonadvantagesanddisad-vantages,andexampleusecasesandlinkstofurtherresourcesareprovided.

Annex1providesasummaryofthedifferentmethods,whicharediscussedinthistypology,includingrequirementsforthemethodtoaccuratelyestimatewelfareindicatorsandwhatlimitationsthemethodhas.

Beforewemoveon,itisimportanttonotethatallmodelsdescribednextrelyonimportantassumptionsthatneedtobeassessedandpossiblyvalidatedineachcontext.Whenfeasible,itisrecommendedtorundifferentoptionstocom-pareresults.Triangulationoffindingswithotherexternalsourcesofinformationisalsoadvisable.Finally,allmethodshaveerrors,andwhereverpossible,confi-denceintervalsshouldbereportedwiththeresults.

17

1.1NowcastingWelfareUsingSurveyandOtherNon-surveyCovariates

Surveyandnon-survey-basedimputationmethods(covariate-basednowcasting)modeltherelationshipbetweenconsumptionorincomeandothercovariatestonowcastpoverty.Survey-to-surveyimputationmethodsdrawupondistributionsofconsumption(orincome)variablesandothercovari-atesfromabaselinesurveytonowcastconsumption(orincome)levelsusingarecentauxiliarysurvey,whichitselfdoesnotholdconsumptionvariables.Non-survey-basedimputationdrawsuponinformationfromnon-surveyauxil-iarydata,suchasremotely-sensedgeospatialdata.Thesevariablescaneitherbeusedtoimprovesurvey-basedmodelsortoindependentlyformimputationmodels.

Whileimputationacrossspacehasreceivedconsiderableattention,advance-mentsinsurvey-basedimputationofwelfareovertimearestillrecent.Hentscheletal.(1998)andElbers,Lanjouw,andLanjouw(2003)initiatedawaveofresearchwithinandoutsideoftheWorldBanktoadaptimputationmethodstoestimatemonetarypovertyforpovertymapping.Theseimputationmodelshavebeenwidelyusedtogeneratespatiallydisaggregatedwelfareinformation.23Morerecentworkisexploringwaystoadaptthesemodelstoupdatewelfareacrosstime.

Mostcommonly,linearregressionmodelsareusedtoimputeconsumptionandexpenditurevariables.Surveyandnon-survey-basedimputationmodelsalsoinvolvestatisticalapproacheslikehot-deckimputationandmultipleimpu-tation(MI),whichaimtoreducenonresponsebiasandimprovetheoverallrep-resentativenessandqualityofsurveydata.4Somestudiesestimateapooror

2Formoreinformationaboutimputationmethodsacrossspace,seeforinstance

Corraletal.(2022)

,StifelandChristiaensen(2007),Tarozzi(2007),Christiaensen(2012),Mathiassen(2013),orthereport“

MoreThanaPrettyPicture:UsingPovertyMapstoDesignBetterPoliciesandInterventions

.”

3Survey-to-surveyimputationcanalsobeusefulforotherapplicationsbeyondupdatingormappingmonetarypoverty,suchasensuringcomparabilityofconsumptionovertimeorimputingnon-mone-tarywelfaremetrics.Evenwhensurveysareavailable,changesinpovertylinesorconsumptionmod-ulescanhindercomparisonsofpovertyovertime.Survey-to-surveyimputationhasalsobeenusedtorestorecomparabilityin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论