2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题【含答案】_第1页
2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题【含答案】_第2页
2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题【含答案】_第3页
2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题【含答案】_第4页
2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年陇南市重点中学数学九年级第一学期开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.62、(4分)下列根式中与是同类二次根式的是()A. B. C. D.3、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是()A. B.1 C. D.4、(4分)用配方法解方程,方程可变形为()A.x124 B.x124 C.x122 D.x1225、(4分)如图,正方形ABCD的周长是16,P是对角线AC上的个动点,E是CD的中点,则PE+PD的最小值为()A.2 B.2 C.2 D.46、(4分)下列实数中,无理数是()A. B. C. D.7、(4分)矩形的面积为,一边长为,则另一边长为()A. B. C. D.8、(4分)在平行四边形ABCD中,对角线AC,BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90° B.AC=BDC.AC⊥BD D.∠BAD=∠ADC二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.10、(4分)观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.11、(4分)若,是一元二次方程的两个实数根,则__________.12、(4分)抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.13、(4分)某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,已知一次函数y=-2x+4的图象与x轴,y轴分别交于点B,A.以AB为边在第一象限内作等腰Rt△ABC,且∠ABC=90°,BA=BC.过C作CD⊥x轴于点D.OB的垂直平分线l交AB于点E,交x轴于点G.(1)求点C的坐标;(2)连接CE,判定四边形EGDC的形状,并说明理由;(3)在直线l上有一点M,使得S△ABM=1215、(8分)如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.16、(8分)某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.17、(10分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)(2)求的值.18、(10分)(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)54003500售价(元/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)用反证法证明:“三角形中至少有两个锐角”时,首先应假设这个三角形中_____.20、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.21、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.22、(4分)若一个三角形的三边长分别为5、12、13,则此三角形的面积为.23、(4分)a与5的和的3倍用代数式表示是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.25、(10分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:(1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;(2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;(3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.26、(12分)如图,D为AB上一点,△ACE≌△BCD,AD2+DB2=DE2,试判断△ABC的形状,并说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

由众数的定义,求出其中出现次数最多的数即可.【详解】∵数据1,1,6,1,3,4,3,1,6,5,4,5,4中,1出现了4次,出现的次数最多,

∴众数是1.

故选:A.考查了众数,用到的知识点是众数的定义,关键是找出出现次数最多的数.2、C【解析】

各项化简后,利用同类二次根式定义判断即可.【详解】解:、,不符合题意;、,不符合题意;、,与的被开方数相同;与是同类二次根式是符合题意;、,不符合题意,故选:.此题考查了同类二次根式,熟练掌握同类二次根式定义是解本题的关键.3、D【解析】

分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:

①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,

过A作AF⊥BC于F,

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠C+∠B=180°,

∵∠C=120°,

∴∠B=60°,

Rt△ABF中,∠BAF=30°,

∴BF=AB=1,AF=,

∴此时△ABE的最大面积为:×4×=2;

②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;

③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,

综上,△ABE的面积的最大值是2;

故选:D.本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.4、B【解析】

将的常数项变号后移项到方程右边,然后方程两边都加上,方程左边利用完全平方公式变形后,即可得到结果.【详解】,移项得:,两边加上得:,变形得:,则原方程利用配方法变形为.故选.此题考查了利用配方法解一元二次方程,利用此方法的步骤为:1、将二次项系数化为“”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方,方程左边利用完全平方公式变形,方程右边为非负常数;4、开方转化为两个一元一次方程来求解.5、A【解析】

由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【详解】解:如图,连接BE,设BE与AC交于点P',∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P在AC与BE的交点上时,PD+PE最小,即为BE的长度.∴直角△CBE中,∠BCE=90°,BC=4,CE=CD=2,∴.故选:A.本题题考查了轴对称中的最短路线问题,要灵活运用正方形的性质、对称性是解决此类问题的重要方法,找出P点位置是解题的关键6、D【解析】

根据无理数、有理数的定义即可判定选择项.【详解】解:A、是分数,属于有理数,本选项不符合题意;B、是有限小数,属于有理数,本选项不符合题意;C、是整数,属于有理数,本选项不符合题意;D、=是无理数,本选项不符合题意;故选:D.此题主要考查了无理数定义无理数是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7、C【解析】

根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】∵矩形的面积为18,一边长为,∴另一边长为,故选:C.本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.8、C【解析】

根据平行四边形的性质、矩形的判定定理对各项进行判断分析即可.【详解】A.有一个角为直角的平行四边形是矩形,正确;B.对角线相等的平行四边形是矩形,正确;C.并不能判定平行四边形ABCD为矩形,错误;D.∵四边形ABCD是平行四边形,∠BAD=∠ADC∴∠BAD=∠ADC=90°,根据有一个角为直角的平行四边形是矩形,正确;故答案为:C.本题考查了矩形的判定问题,掌握平行四边形的性质、矩形的判定定理是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、4或【解析】

解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.10、841【解析】

认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【详解】解:由已知等式可知,,∴故答案为:84、1.本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.11、【解析】

根据根与系数的关系可得出,将其代入中即可求出结论.【详解】解:∵x1,x2是一元二次方程x2+x-2=0的两个实数根,

∴,

∴.

故答案为:.本题考查了根与系数的关系,牢记两根之积等于是解题的关键.12、【解析】

由题意知共有6种等可能结果,朝上一面的点数不小于3的有4种结果,利用概率公式计算可得.【详解】解:∵抛掷一枚质地均匀的骰子1次共有6种等可能结果,朝上一面的点数不小于3的有4种结果,

所以朝上一面的点数不小于3的概率是=,

故答案为:.此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13、1【解析】先设最多降价x元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.解:设最多降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤1.

故该店最多降价1元出售该商品.“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.三、解答题(本大题共5个小题,共48分)14、(1)C(6,2);(2)四边形EGDC是矩形,理由详见解析;(3)M点坐标为1,7或1,-3.【解析】

(1)根据一次函数解析式求出A,B坐标,证明△AOB≌△BDC(AAS),即可解决问题.(2)证明EG=CD.EG∥CD,推出四边形EGDC是平行四边形,再根据CD⊥x轴即可解决问题.(3)先求出SΔABM=5,设M(1,【详解】(1)当x=0时,y=-2x+4=4,∴A(0,4).∴OA=4.当y=-2x+4=0时,x=2,∴B(2,0).∴OB=2.∵∠AOB=∠ABC=90°,∴∠OAB=∠CBD.在ΔAOB和ΔBDC中,∵AB=BC   ∴ΔAOB  ∴DC=OB=2   ∴OD=6.∴C(6,2).(2)∵EG是OB的垂直平分线,∴G点坐标为(1,0),E点坐标为(1,2),∴EG=2.∵EG=CD=2,EG∕∕CD,∴四边形EGDC是平行四边形.∵CD⊥x轴,∴平行四边形EGDC是矩形.(3)在ΔABC中,AB∴SΔABC∴SΔABM设M点的坐标为(1,m),则ME=m-2过A作AH⊥MG于H,则AH=1.S=1解得:m=7或-3.所以M点坐标为1,7或1,-3.本题属于一次函数综合题,考查了等腰三角形的性质,矩形的性质,一次函数的性质,矩形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、(1)(20﹣2x),(12﹣2x);(2)1【解析】

(1)观察图形根据长宽的变化量用含x的代数式表示即可.(2)根据(1)中代数式列出方程求解,去掉不合题意的取值.【详解】(1)长为(20﹣2x),宽为(12﹣2x)(2)由题意(20﹣2x)(12﹣2x)=180240-64x+4x2=1804x2-64x+60=0x2-16x+15=0(x-15)(x-1)=0解得x1=15(不合题意),x2=1∴x的取值只能是1,即x=1.结合图形观察长宽的变化量,根据一元二次方程求解即可.16、原计划平均每年完成绿化面积万亩.【解析】

本题的相等关系是:原计划完成绿化时间−实际完成绿化实际=1.设原计划平均每年完成绿化面积x万亩,则原计划完成绿化完成时间年,实际完成绿化完成时间:年,列出分式方程求解【详解】解:设原计划平均每年完成绿化面积万亩.根据题意可列方程:去分母整理得:解得:,经检验:,都是原分式方程的根,因为绿化面积不能为负,所以取.答:原计划平均每年完成绿化面积万亩.本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.17、(1),;(2)【解析】

(1)根据题意列出对应的代数式即可.(2)根据题意列出方程,求解即可.【详解】(1)由题意得,第二批衬衫进价为元,购进的数量为件.故答案为:;.(2)第一批利润:(元),第二批利润:(元),,整理得,(舍)增长率为本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.18、解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,由题意,得y=(6100﹣5400)x+(3900﹣3500)(30﹣x)=300x+12000。(2)依题意,得,解得10≤x≤。∵x为整数,∴x=10,11,12。∴商场有三种方案可供选择:方案1:购空调10台,购彩电20台;方案2:购空调11台,购彩电19台;方案3:购空调12台,购彩电18台。(3)∵y=300x+12000,k=300>0,∴y随x的增大而增大。∴当x=12时,y有最大值,y最大=300×12+12000=15600元.故选择方案3:购空调12台,购彩电18台时,商场获利最大,最大利润是15600元。【解析】(1)y=(空调售价﹣空调进价)x+(彩电售价﹣彩电进价)×(30﹣x)。(2)根据用于一次性购进空调、彩电共30台,总资金为12.8万元,全部销售后利润不少于1.5万元.得到一元一次不等式组,求出满足题意的x的正整数值即可。(3)利用y与x的函数关系式y=150x+6000的增减性来选择哪种方案获利最大,并求此时的最大利润即可。考点:一次函数和一元一次不等式组的应用,由实际问题列函数关系式,一次函数的性质。一、填空题(本大题共5个小题,每小题4分,共20分)19、三角形三个内角中最多有一个锐角【解析】

“至少有两个”的反面为“最多有一个”,据此直接写出逆命题即可.【详解】∵至少有两个”的反面为“最多有一个”,而反证法的假设即原命题的逆命题正确;∴应假设:三角形三个内角中最多有一个锐角.故答案为:三角形三个内角中最多有一个锐角本题考查了反证法,注意逆命题的与原命题的关系.20、(7,4)(2n﹣1,2n﹣1).【解析】

根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,∴点Bn的坐标为(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1)本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.21、1【解析】

根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.【详解】∵DE为△ABC的中位线,∴DE=BC=×8=4,∵∠AFB=90°,D是AB的中点,∴DF=AB=×6=3,∴EF=DE-DF=1,故答案为:1.本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.22、30【解析】

解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3023、3(a+5)【解析】根据题意,先求和,再求倍数.解:a与5的和为a+5,a与5的和的3倍用代数式表示是3(a+5).列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.二、解答题(本大题共3个小题,共30分)24、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.【解析】【分析】(1)A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.【详解】解:(1)直角坐标系如图所示.图书馆的坐标为B(-2,-2).(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论