高中数学 2.2.4 平面与平面平行的性质强化练习 新人教A版必修2_第1页
高中数学 2.2.4 平面与平面平行的性质强化练习 新人教A版必修2_第2页
高中数学 2.2.4 平面与平面平行的性质强化练习 新人教A版必修2_第3页
高中数学 2.2.4 平面与平面平行的性质强化练习 新人教A版必修2_第4页
高中数学 2.2.4 平面与平面平行的性质强化练习 新人教A版必修2_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【成才之路】-学年高中数学2.2.4平面与平面平行的性质强化练习新人教A版必修2一、选择题1.平面α∥平面β,平面r∩α=m,平面r∩β=n,则m与n的位置关系是()A.平行 B.相交C.异面 D.以上均有可能[答案]A2.已知长方体ABCD-A′B′C′D′,平面α∩平面AC=EF,平面α∩平面A′C′=E′F′,则EF与E′F′的位置关系是()A.平行 B.相交C.异面 D.不确定[答案]A[解析]由于平面AC∥平面A′C′,所以EF∥E′F′.3.有一正方体木块如图所示,点P在平面A′C′内,棱BC平行于平面A′C′,要经过P和棱BC将木料锯开,锯开的面必须平整,有N种锯法,则N为()A.0 B.1C.2 D.无数[答案]B[解析]∵BC∥平面A′C′,∴BC∥B′C′,在平面A′C′上过P作EF∥B′C′,则EF∥BC,∴沿EF、BC所确定的平面锯开即可.又由于此平面唯一确定,∴只有一种方法,故选B.4.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是()A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b[答案]D[解析]选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言,故选D.5.已知两条直线m,n两个平面α,β,给出下面四个命题:①α∩β=m,n⊂α⇒m∥n或者m,n相交;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∩β=m,m∥n⇒n∥β且n∥α.其中正确命题的序号是()A.① B.①④C.④ D.③④[答案]A6.平面α∥平面β,△ABC,△A′B′C′分别在α、β内,线段AA′,BB′,CC′共点于O,O在α、β之间.若AB=2,AC=1,∠BAC=60°,OAOA′=32,则△A′B′C′的面积为()A.eq\f(\r(3),9) B.eq\f(\r(3),3)C.eq\f(2\r(3),9) D.eq\f(2\r(3),3)[答案]C[解析]如图∵α∥β,∴BC∥B′C′,AB∥A′B′,AC∥A′C′,∴△ABC∽△A′B′C′,且由eq\f(AB,A′B′)=eq\f(OA,OA′)=eq\f(3,2)知相似比为eq\f(3,2),又由AB=2,AC=1,∠BAC=60°,知S△ABC=eq\f(1,2)AB·CD=eq\f(1,2)AB·(AC·sin60°)=eq\f(\r(3),2),∴S△A′B′C′=eq\f(2\r(3),9).二、填空题7.(~·东莞模拟)如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.[答案]平行四边形[解析]∵平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH的形状是平行四边形.8.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列结论中正确的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.[答案]①②④[解析]∵MN∥PQ,∴PQ∥平面ACD,又平面ACD∩平面ABC=AC,∴PQ∥AC,从而AC∥截面PQMN,②正确;同理可得MQ∥BD,故AC⊥BD,①正确;又MQ∥BD,∠PMQ=45°,∴异面直线PM与BD所成的角为45°,故④正确.根据已知条件无法得到AC,BD长度之间的关系.故填①②④.9.已知平面α∥平面β,点A,C∈α,点B,D∈β,直线AB,CD交于点S,且SA=8,SB=9,CD=34.(1)若点S在平面α,β之间,则SC=________.(2)若点S不在平面α,β之间,则SC=________.[答案](1)16(2)272[解析](1)如图a所示,因为AB∩CD=S,所以AB,CD确定一个平面,设为γ,则α∩γ=AC,β∩γ=BD.因为α∥β,所以AC∥BD.于是eq\f(SA,SB)=eq\f(SC,SD),即eq\f(SA,AB)=eq\f(SC,CD).所以SC=eq\f(SA·CD,AB)=eq\f(8×34,9+8)=16.(2)如图b所示,同理知AC∥BD,则eq\f(SA,SB)=eq\f(SC,SD),即eq\f(8,9)=eq\f(SC,SC+34),解得SC=272.三、解答题10.(·山东)如图,四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.求证:CE∥平面PAD.[分析]证明线面平行,有两种思路:(1)利用线面平行的判定定理,通过线线平行证明线面平行;(2)利用面面平行的性质,证明线面平行.所以本题可以从两个角度考虑,一是在平面PAD中找与CE平行的直线,二是构造过CE且与平面PAD平行的平面.[解析]方法一:如图所示,取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH∥AB,EH=eq\f(1,2)AB.又AB∥CD,CD=eq\f(1,2)AB,所以EH∥CD,EH=CD.因此四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.方法二:如图所示,取AB的中点F,连接CF,EF,所以AF=eq\f(1,2)AB.又CD=eq\f(1,2)AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形,因此CF∥AD.又CF⊄平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊄平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE⊂平面CEF,所以CE∥平面PAD.11.如图所示,P是△ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC于A′,B′,C′.若eq\f(PA′,A′A)=eq\f(2,3),求eq\f(S△A′B′C,S△ABC)的值.[答案]由面面平行可得线线平行,再由等角定理可得对应角相等,从而三角形相似,利用相似三角形的比例关系找到面积比.[解析]∵平面α∥平面ABC,平面PAB∩平面α=A′B′,平面PAB∩平面ABC=AB,∴A′B′∥AB.同理可证B′C′∥BC,A′C′∥AC.∴∠B′A′C′=∠BAC,∠A′B′C′=∠ABC,∠A′C′B′=∠ACB,∴△A′B′C′∽△ABC.又∵PA′A′A=23,∴PA′PA=25,.∴A′B′AB=25.∴SA′B′C′SABC=425,即eq\f(S△A′B′C′,S△ABC)=eq\f(4,25).12.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1的点,问:当点Q在什么位置时,平面D1BQ与平面PAO[解析]如图,设平面D1BQ∩平面ADD1A1=D1M,点M在AA1上,由于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论