第11讲 电磁感应的规律及综合应用 拔高练习_第1页
第11讲 电磁感应的规律及综合应用 拔高练习_第2页
第11讲 电磁感应的规律及综合应用 拔高练习_第3页
第11讲 电磁感应的规律及综合应用 拔高练习_第4页
第11讲 电磁感应的规律及综合应用 拔高练习_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学而优·教有方PAGEPAGE57专题四电路与电磁感应第11讲电磁感应的规律及综合应用1.(多选)(2021·广东卷)如图所示,水平放置足够长光滑金属导轨和,与平行,是以O为圆心的圆弧导轨,圆弧左侧和扇形内有方向如图的匀强磁场,金属杆的O端与e点用导线相接,P端与圆弧接触良好,初始时,可滑动的金属杆静止在平行导轨上,若杆绕O点在匀强磁场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有()A.杆产生的感应电动势恒定B.杆受到的安培力不变C.杆做匀加速直线运动D.杆中的电流逐渐减小2.(多选)(2021·全国甲卷)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示。不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是()A.甲和乙都加速运动B甲和乙都减速运动C.甲加速运动,乙减速运动D.甲减速运动,乙加速运动3.(多选)(2021·山东卷)如图所示,电阻不计的光滑U形金属导轨固定在绝缘斜面上。区域Ⅰ、Ⅱ中磁场方向均垂直斜面向上,Ⅰ区中磁感应强度随时间均匀增加,Ⅱ区中为匀强磁场。阻值恒定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行至c处反向上行。运动过程中金属棒始终垂直导轨且接触良好。在第一次下行和上行的过程中,以下叙述正确的是()A.金属棒下行过b时的速度大于上行过b时的速度B.金属棒下行过b时的加速度大于上行过b时的加速度C.金属棒不能回到无磁场区D.金属棒能回到无磁场区,但不能回到a处4.(2021·山东卷)迷你系绳卫星在地球赤道正上方的电离层中,沿圆形轨道绕地飞行。系绳卫星由两子卫星组成,它们之间的导体绳沿地球半径方向,如图所示。在电池和感应电动势的共同作用下,导体绳中形成指向地心的电流,等效总电阻为r。导体绳所受的安培力克服大小为f的环境阻力,可使卫星保持在原轨道上。已知卫生离地平均高度为H,导体绳长为,地球半径为R,质量为M,轨道处磁感应强度大小为B,方向垂直于赤道平面。忽略地球自转的影响。据此可得,电池电动势为()A. B.C. D.楞次定律及法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E=neq\f(ΔΦ,Δt),用来计算感应电动势的平均值。(2)E=BLv或E=eq\f(1,2)BL2ω,主要用来计算感应电动势的瞬时值。2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断。(2)利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断。3.楞次定律中“阻碍”的4种表现形式(1)阻碍磁通量的变化——“增反减同”。(2)阻碍相对运动——“来拒去留”。(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”。(4)阻碍电流的变化(自感现象)——“增反减同”。例题1.(2021·河北卷)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B,导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点,狭缝右侧两导轨与x轴夹角均为,一电容为C的电容器与导轨左端相连,导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻,下列说法正确的是()A.通过金属棒的电流为B.金属棒到达时,电容器极板上的电荷量为C.金属棒运动过程中,电容器的上极板带负电D.金属棒运动过程中,外力F做功的功率恒定夯实成果练1.(2020·浙江卷)如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴上,随轴以角速度匀速转动。在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是()A.棒产生的电动势为B.微粒的电荷量与质量之比为C.电阻消耗的电功率为D.电容器所带的电荷量为例题2.(2020·新课标Ⅲ卷)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动夯实成果练2.如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是()A.同时增大减小B.同时减小增大C.同时以相同的变化率增大和D.同时以相同的变化率减小和电磁感应中的力、电综合问题1.解答此类问题首先要分清左手定则、右手定则、安培定则比较项目左手定则右手定则安培定则应用磁场对运动电荷、电流作用力方向的判断对因导体切割磁感线而产生的感应电流方向的判断对电流产生磁场方向的判断涉及方向的物理量磁场方向、电流(电荷运动)方向,安培力(洛伦兹力)方向磁场方向、导体切割磁感线的运动方向、感应电动势的方向电流方向、磁场方向各物理量方向间的关系图例因果关系电流→力运动→电流电流→磁场应用实例电动机发电机电流的磁效应2.电磁感应中动力学问题的解题思路(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向.(2)根据等效电路图,求解回路中电流的大小及方向.(3)分析安培力对导体棒运动速度、加速度的影响,从而推理得出对电路中的电流有什么影响,最后定性分析导体棒的最终运动情况.(4)列牛顿第二定律或平衡方程求解.3.能量转化问题的分析:先电后力再能量.4.解决电磁感应中电路问题的思路(1).“源”的分析:用法拉第电磁感应定律算出E的大小,用楞次定律或右手定则确定感应电动势的方向(感应电流方向是电源内部电流的方向),从而确定电源正负极,明确内阻r.(2).“路”的分析:根据“等效电源”和电路中其他各元件的连接方式画出等效电路.(3).根据E=BLv或E=neq\f(ΔФ,Δt),结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题3.(2021·全国乙卷)如图,一倾角为的光滑固定斜面的顶端放有质量的U型导体框,导体框的电阻忽略不计;一电阻的金属棒的两端置于导体框上,与导体框构成矩形回路;与斜面底边平行,长度。初始时与相距,金属棒与导体框同时由静止开始下滑,金属棒下滑距离后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小,重力加速度大小取。求:(1)金属棒在磁场中运动时所受安培力的大小;(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;(3)导体框匀速运动的距离。夯实成果练3.(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示。一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示。则在t=0到t=t1的时间间隔内()图(a)图(b)A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为eq\f(B0rS,4t0ρ)D.圆环中的感应电动势大小为eq\f(B0πr2,4t0)例题4.(多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值夯实成果练4.(多选)手机无线充电是比较新颖的充电方式。如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量。当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电。在充电过程中A.送电线圈中电流产生的磁场呈周期性变化B.受电线圈中感应电流产生的磁场恒定不变C.送电线圈和受电线圈通过互感现象实现能量传递D.手机和基座无需导线连接,这样传递能量没有损失电磁感应中的动量问题1.应用动量观点解决电磁感应综合问题可分为两类:(1)利用动量定理求感应电荷量或运动位移应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题。如:Beq\o(I,\s\up6(-))LΔt=Δp,q=eq\x\to(I)·Δt,可得q=eq\f(Δp,BL)。eq\f(B2L2\o(v,\s\up6(-)),R总)Δt=Δp,x=eq\o(v,\s\up6(-))Δt,可得x=eq\f(ΔpR总,B2L2)。(2)利用动量守恒定律分析双导体杆问题在相互平行的光滑水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒。解决此类问题往往要应用动量守恒定律。例题5.如图甲所示,两条相距l的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻,在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使长为l、电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化(棒ab与导轨始终保持良好的接触且下落过程中始终保持水平,导轨电阻不计)。(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;(2)棒ab从静止释放经过时间t0下降了eq\f(d,2),求此时刻的速度大小;(3)如图乙所示,在OO′上方区域加一面积为S的垂直于纸面向里的匀强磁场B′,棒ab由静止开始自OO′上方某一高度处释放,自棒ab运动到OO′位置开始计时,B′随时间t的变化关系B′=kt,式中k为已知常量;棒ab以速度v0进入OO′下方磁场后立即施加一竖直外力使其保持匀速运动。求在t时刻穿过回路的总磁通量和电阻R的电功率。夯实成果练5.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T的匀强磁场中,两导轨间距为L=0.5m,导轨足够长且不计电阻。金属棒a和b的质量都为m=1kg,连入导轨间的电阻Ra=Rb=1Ω。b棒静止于导轨水平部分,现将a棒从h=80cm高处自静止沿弧形导轨下滑,通过C点进入导轨的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰。求a、b两棒的最终速度,以及整个过程中b棒中产生的焦耳热(已知重力加速度g=10m/s2)。例题6.两足够长且不计电阻的光滑金属轨道如图甲平行放置,间距为d=1m,在左端弧形轨道部分高h=1.25m处放置一金属杆a,弧形轨道与水平直轨道平滑连接,在水平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra=2Ω、Rb=5Ω,在水平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2T。现杆b以大小为v0=5m/s的初速度开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平直轨道的过程中,通过杆b的平均电流为eq\x\to(I)=0.3A;从a下滑到水平直轨道时开始计时,a、b运动的速度—时间图像如图乙所示(以a运动方向为正方向),其中ma=2kg,mb=1kg,g=10m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平直轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b产生的焦耳热。夯实成果练6.如图所示,两根质量均为m=2kg的金属棒垂直放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比,不计导轨电阻。现用250N的水平拉力F向右拉CD棒,CD棒运动s=0.5m时其上产生的焦耳热为Q2=30J,此时两棒速率之比为vA∶vC=1∶2,现立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)在CD棒运动0.5m的过程中,AB棒上产生的焦耳热;(2)撤去拉力F瞬间,两棒的速度大小vA和vC;(3)撤去拉力F后,两棒最终匀速运动的速度大小vA′和vC′。电磁感应中的图像问题1.图像类型2.分析方法3.解答电磁感应中图像类选择题的两个常用方法排除法定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项函数法根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断例题7.如图所示,半径为的圆形区域内存在一垂直纸面向里的匀强磁场,一半径小于的圆形导线环沿着它们圆心连线的方向匀速穿过磁场区域,关于导线环中的感应电流随时间的变化关系,下列图像中(以逆时针方向为电流的正方向)最符合实际的是A. B.C. D.夯实成果练7.(多选)如图,平行光滑金属导轨M、N固定在水平面上,处于竖直向下的匀强磁场中.完全相同的两金属棒P、Q搭放在导轨上,开始均处于静止状态.给P施加一与导轨平行的恒定拉力作用,运动中两金属棒始终与导轨垂直并与导轨接触良好.设导轨足够长,除两棒的电阻外其余电阻均不计.则两棒的速度及棒中的感应电流随时间变化的图象正确的是A.B.C.D.例题8.(多选)如图所示,等腰直角三角形金属框abc右侧有一有界匀强磁场,磁场方向垂直纸面向外,ab边与磁场两边界平行,磁场宽度大于bc边的长度。现使框架沿bc边方向匀速穿过磁场区域,t=0时,c点恰好达到磁场左边界。线框中产生的感应电动势大小为E,感应电流为I(逆时针方向为电流正方向),bc两点间的电势差为Ubc,金属框的电功率为P。图中上述各量随时间变化的图像可能正确的是() B.C.D.夯实成果练8.如图甲所示,矩形导线框abcd固定在变化的磁场中,产生了如图乙所示的电流(电流方向abcda为正方向)。若规定垂直纸面向里的方向为磁场正方向,能够产生如图乙所示电流的磁场为()1.楞次定律是下列哪个定律在电磁感应现象中的具体体现?A.电阻定律 B.库仑定律C.欧姆定律 D.能量守恒定律2.(多选)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理示意图如图所示。两根固定于水平面内的光滑平行金属导轨间距为L,导轨间存在垂直于导轨平面向里、磁感应强度大小为B的匀强磁场,导轨电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。电容器电容C,首先开关接1,使电容器完全充电。然后将S接至2,MN达到最大速度vm后离开导轨。这个过程中A.MN做匀加速直线运动B.通过MN的电量C.达到最大速度时电容器C两极板间的电压为0D.求出通过MN的电量q后,不可以利用的公式求出MN加速过程的位移3.(多选)如图,条形磁铁在固定的水平闭合导体圆环正上方,从离地面高h处由静止开始下落,下落过程中始终保持竖直方向,并从圆环中心穿过,最后落在水平地面上。条形磁铁A、B两端经过线圈平面时的速度分别为v1、v2,线圈中的感应电流分别为I1、I2,电流的瞬时功率分别为P1、P2.不计空气阻力,重力加速度为g,下列说法正确的是A.从上往下看,I2的方向为顺时针B.I1:I2=v1:v2C.P1:P2=v1:v2D.磁铁落地时的速率为4.如图所示,垂直于纸面的匀强磁场磁感应强度为B.纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行.从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)感应电动势的大小E;(2)拉力做功的功率P;(3)ab边产生的焦耳热Q.5.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度Ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是()A.Ua>Uc,金属框中无电流B.Ub>Uc,金属框中电流方向沿a-b-c-aC.Ubc=-eq\f(1,2)Bl2Ω,金属框中无电流D.Ubc=eq\f(1,2)Bl2Ω,金属框中电流方向沿a-c-b-a6.(多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()7.如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好.MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长、电阻忽略不计.(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W.8.(多选)如图所示,水平放置的光滑平行金属导轨,左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20cm的光滑圆弧导轨相接,导轨宽度为20cm,电阻不计.导轨所在空间有竖直方向的匀强磁场,磁感应强度B=0.5T.一根导体棒ab垂直导轨放置,质量m=60g、电阻R=1Ω,用两根长也为20cm的绝缘细线悬挂,导体棒恰好与导轨接触.当闭合开关S后,导体棒沿圆弧摆动,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态.导体棒ab速度最大时,细线与竖直方向的夹角θ=53°(sin53°=0.8,cos53°=0.6,g=10m/s2),则()A.磁场方向一定竖直向上B.电源的电动势E=8VC.导体棒在摆动过程中所受安培力F=8ND.导体棒摆动过程中的最大动能为0.08J9.(多选)如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度大小为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,两边界间的宽度为s,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行).已知正方形金属线框的边长为L(L<s)、质量为m、电阻为R,当地的重力加速度为g(下落过程中bc边始终水平且线框始终在竖直面内).关于线框在穿越磁场的过程中,以下说法正确的是()A.线框的速度v1一定等于eq\f(mgR,B2L2)B.如果线框刚进入磁场时加速度大小是eq\f(g,4),则v2=eq\f(4mgR,5B2L2)C.如果线框刚进入磁场时加速度大小是eq\f(g,4),线框在进入磁场的过程中,通过线框的电荷量可能是eq\f(m2gR,5B3L3)D.线框穿出磁场的过程中流经线框横截面的电荷量q=eq\f(BL2,R)10.(多选)(2019·高考全国卷Ⅱ)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab、cd均与导轨垂直,在ab与cd之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ、MN先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ进入磁场时加速度恰好为零.从PQ进入磁场开始计时,到MN离开磁场区域为止,流过PQ的电流随时间变化的图象可能正确的是()专题四电路与电磁感应第11讲电磁感应的规律及综合应用(解析)1.(多选)(2021·广东卷)如图所示,水平放置足够长光滑金属导轨和,与平行,是以O为圆心的圆弧导轨,圆弧左侧和扇形内有方向如图的匀强磁场,金属杆的O端与e点用导线相接,P端与圆弧接触良好,初始时,可滑动的金属杆静止在平行导轨上,若杆绕O点在匀强磁场区内从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有()A.杆产生的感应电动势恒定B.杆受到的安培力不变C.杆做匀加速直线运动D.杆中的电流逐渐减小【答案】AD【解析】A.OP转动切割磁感线产生的感应电动势为因为OP匀速转动,所以杆OP产生的感应电动势恒定,故A正确;BCD.杆OP匀速转动产生的感应电动势产生的感应电流由M到N通过MN棒,由左手定则可知,MN棒会向左运动,MN棒运动会切割磁感线,产生电动势与原来电流方向相反,让回路电流减小,MN棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D正确,BC错误。故选AD。2.(多选)(2021·全国甲卷)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍。现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示。不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平。在线圈下边进入磁场后且上边进入磁场前,可能出现的是()A.甲和乙都加速运动B甲和乙都减速运动C.甲加速运动,乙减速运动D.甲减速运动,乙加速运动【答案】AB【解析】设线圈到磁场的高度为h,线圈的边长为l,则线圈下边刚进入磁场时,有感应电动势为两线圈材料相等(设密度为),质量相同(设为),则设材料的电阻率为,则线圈电阻感应电流安培力为由牛顿第二定律有联立解得加速度和线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度。当时,甲和乙都加速运动,当时,甲和乙都减速运动,当时都匀速。故选AB。3.(多选)(2021·山东卷)如图所示,电阻不计的光滑U形金属导轨固定在绝缘斜面上。区域Ⅰ、Ⅱ中磁场方向均垂直斜面向上,Ⅰ区中磁感应强度随时间均匀增加,Ⅱ区中为匀强磁场。阻值恒定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行至c处反向上行。运动过程中金属棒始终垂直导轨且接触良好。在第一次下行和上行的过程中,以下叙述正确的是()A.金属棒下行过b时的速度大于上行过b时的速度B.金属棒下行过b时的加速度大于上行过b时的加速度C.金属棒不能回到无磁场区D.金属棒能回到无磁场区,但不能回到a处【答案】ABD【解析】AB.在I区域中,磁感应强度为,感应电动势为感应电动势恒定,所以导体棒上的感应电流恒为导体棒进入Ⅱ区域后,导体切割磁感线,感应电动势导体棒上的电流为Ⅰ区域产生的电流对导体棒的安培力始终沿斜面向上,大小恒定不变,因为导体棒到达点后又能上行,说明加速度始终沿斜面向上,下行和上行经过点的受力分析如图下行过程中,根据牛顿第二定律可知上行过程中,根据牛顿第二定律可知比较加速度大小可知由于段距离不变,下行过程中加速度大,上行过程中加速度小,所以金属板下行过经过点时的速度大于上行经过点时的速度,AB正确;CD.Ⅰ区域产生的安培力总是大于沿斜面向下的作用力,所以金属棒一定能回到无磁场区域,由于整个过程中电流通过金属棒产生焦耳热,金属棒的机械能减少,所以金属棒不能回到处,C错误,D正确。故选ABD。4.(2021·山东卷)迷你系绳卫星在地球赤道正上方的电离层中,沿圆形轨道绕地飞行。系绳卫星由两子卫星组成,它们之间的导体绳沿地球半径方向,如图所示。在电池和感应电动势的共同作用下,导体绳中形成指向地心的电流,等效总电阻为r。导体绳所受的安培力克服大小为f的环境阻力,可使卫星保持在原轨道上。已知卫生离地平均高度为H,导体绳长为,地球半径为R,质量为M,轨道处磁感应强度大小为B,方向垂直于赤道平面。忽略地球自转的影响。据此可得,电池电动势为()A. B.C. D.【答案】A【解析】根据可得卫星做圆周运动的线速度根据右手定则可知,导体绳产生的感应电动势相当于上端为正极的电源,其大小为因导线绳所受阻力f与安培力F平衡,则安培力与速度方向相同,可知导线绳中的电流方向向下,即电池电动势大于导线绳切割磁感线产生的电动势,可得解得故选A。楞次定律及法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E=neq\f(ΔΦ,Δt),用来计算感应电动势的平均值。(2)E=BLv或E=eq\f(1,2)BL2ω,主要用来计算感应电动势的瞬时值。2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断。(2)利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断。3.楞次定律中“阻碍”的4种表现形式(1)阻碍磁通量的变化——“增反减同”。(2)阻碍相对运动——“来拒去留”。(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”。(4)阻碍电流的变化(自感现象)——“增反减同”。例题1.(2021·河北卷)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B,导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点,狭缝右侧两导轨与x轴夹角均为,一电容为C的电容器与导轨左端相连,导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻,下列说法正确的是()A.通过金属棒的电流为B.金属棒到达时,电容器极板上的电荷量为C.金属棒运动过程中,电容器的上极板带负电D.金属棒运动过程中,外力F做功的功率恒定【答案】A【解析】C.根据楞次定律可知电容器的上极板应带正电,C错误;A.由题知导体棒匀速切割磁感线,根据几何关系切割长度为L=2xtanθ,x=vt则产生的感应电动势为E=2Bv2ttanθ由题图可知电容器直接与电源相连,则电容器的电荷量为Q=CE=2BCv2ttanθ则流过导体棒的电流I==2BCv2tanθA正确;B.当金属棒到达x0处时,导体棒产生的感应电动势为E′=2Bvx0tanθ则电容器的电荷量为Q=CE′=2BCvx0tanθB错误;D.由于导体棒做匀速运动则F=F安=BIL由选项A可知流过导体棒的电流I恒定,但L与t成正比,则F为变力,再根据力做功的功率公式P=Fv可看出F为变力,v不变则功率P随力F变化而变化;D错误;故选A。夯实成果练1.(2020·浙江卷)如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴上,随轴以角速度匀速转动。在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是()A.棒产生的电动势为B.微粒的电荷量与质量之比为C.电阻消耗的电功率为D.电容器所带的电荷量为【答案】B【解析】A.如图所示,金属棒绕轴切割磁感线转动,棒产生的电动势A错误;B.电容器两极板间电压等于电源电动势,带电微粒在两极板间处于静止状态,则即B正确;C.电阻消耗的功率C错误;D.电容器所带的电荷量D错误。故选B。例题2.(2020·新课标Ⅲ卷)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动【答案】B【解析】无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,故选B。夯实成果练2.如图所示,两匀强磁场的磁感应强度和大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是()A.同时增大减小B.同时减小增大C.同时以相同的变化率增大和D.同时以相同的变化率减小和【答案】B【解析】AB.产生顺时针方向的感应电流则感应磁场的方向垂直纸面向里。由楞次定律可知,圆环中的净磁通量变化为向里磁通量减少或者向外的磁通量增多,A错误,B正确。CD.同时以相同的变化率增大B1和B2,或同时以相同的变化率较小B1和B2,两个磁场的磁通量总保持大小相同,所以总磁通量为0,不会产生感应电流,CD错误。故选B。电磁感应中的力、电综合问题1.解答此类问题首先要分清左手定则、右手定则、安培定则比较项目左手定则右手定则安培定则应用磁场对运动电荷、电流作用力方向的判断对因导体切割磁感线而产生的感应电流方向的判断对电流产生磁场方向的判断涉及方向的物理量磁场方向、电流(电荷运动)方向,安培力(洛伦兹力)方向磁场方向、导体切割磁感线的运动方向、感应电动势的方向电流方向、磁场方向各物理量方向间的关系图例因果关系电流→力运动→电流电流→磁场应用实例电动机发电机电流的磁效应2.电磁感应中动力学问题的解题思路(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向.(2)根据等效电路图,求解回路中电流的大小及方向.(3)分析安培力对导体棒运动速度、加速度的影响,从而推理得出对电路中的电流有什么影响,最后定性分析导体棒的最终运动情况.(4)列牛顿第二定律或平衡方程求解.3.能量转化问题的分析:先电后力再能量.4.解决电磁感应中电路问题的思路(1).“源”的分析:用法拉第电磁感应定律算出E的大小,用楞次定律或右手定则确定感应电动势的方向(感应电流方向是电源内部电流的方向),从而确定电源正负极,明确内阻r.(2).“路”的分析:根据“等效电源”和电路中其他各元件的连接方式画出等效电路.(3).根据E=BLv或E=neq\f(ΔФ,Δt),结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题3.(2021·全国乙卷)如图,一倾角为的光滑固定斜面的顶端放有质量的U型导体框,导体框的电阻忽略不计;一电阻的金属棒的两端置于导体框上,与导体框构成矩形回路;与斜面底边平行,长度。初始时与相距,金属棒与导体框同时由静止开始下滑,金属棒下滑距离后进入一方向垂直于斜面的匀强磁场区域,磁场边界(图中虚线)与斜面底边平行;金属棒在磁场中做匀速运动,直至离开磁场区域。当金属棒离开磁场的瞬间,导体框的边正好进入磁场,并在匀速运动一段距离后开始加速。已知金属棒与导体框之间始终接触良好,磁场的磁感应强度大小,重力加速度大小取。求:(1)金属棒在磁场中运动时所受安培力的大小;(2)金属棒的质量以及金属棒与导体框之间的动摩擦因数;(3)导体框匀速运动的距离。【答案】(1);(2),;(3)【解析】(1)根据题意可得金属棒和导体框在没有进入磁场时一起做匀加速直线运动,由动能定理可得代入数据解得金属棒在磁场中切割磁场产生感应电动势,由法拉第电磁感应定律可得由闭合回路的欧姆定律可得则导体棒刚进入磁场时受到的安培力为(2)金属棒进入磁场以后因为瞬间受到安培力的作用,根据楞次定律可知金属棒的安培力沿斜面向上,之后金属棒相对导体框向上运动,因此金属棒受到导体框给的沿斜面向下的滑动摩擦力,因匀速运动,可有此时导体框向下做匀加速运动,根据牛顿第二定律可得设磁场区域的宽度为x,则金属棒在磁场中运动的时间为则此时导体框的速度为则导体框的位移因此导体框和金属棒的相对位移为由题意当金属棒离开磁场时金属框的上端EF刚好进入线框,则有位移关系金属框进入磁场时匀速运动,此时的电动势为,导体框受到向上的安培力和滑动摩擦力,因此可得联立以上可得,,,(3)金属棒出磁场以后,速度小于导体框的速度,因此受到向下的摩擦力,做加速运动,则有金属棒向下加速,导体框匀速,当共速时导体框不再匀速,则有导体框匀速运动的距离为代入数据解得夯实成果练3.(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示。一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示。则在t=0到t=t1的时间间隔内()图(a)图(b)A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为eq\f(B0rS,4t0ρ)D.圆环中的感应电动势大小为eq\f(B0πr2,4t0)【答案】BC【解析】由于通过圆环的磁通量均匀变化,故圆环中产生的感应电动势、感应电流的大小和方向不变,但t0时刻磁场方向发生变化,故安培力方向发生变化,A错。根据楞次定律,圆环中感应电流的方向始终沿顺时针方向,B对。根据法拉第电磁感应定律,感应电动势E=eq\f(ΔB,Δt)·S′=eq\f(B0,t0)·eq\f(πr2,2)=eq\f(πB0r2,2t0),根据闭合电路欧姆定律知,电流I=eq\f(E,R)=eq\f(\f(πB0r2,2t0),ρ\f(2πr,S))=eq\f(B0rS,4t0ρ),C对,D错。例题4.(多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【答案】BC【解析】由bc边切割磁感线产生电动势,形成电流,使得导体棒MN受到向右的安培力,做加速运动,bc边受到向左的安培力,向右做加速运动。当MN运动时,金属框的bc边和导体棒MN一起切割磁感线,设导体棒MN和金属框的速度分别为、,则电路中的电动势电流中的电流金属框和导体棒MN受到的安培力,与运动方向相反,与运动方向相同设导体棒MN和金属框的质量分别为、,则对导体棒MN对金属框初始速度均为零,则a1从零开始逐渐增加,a2从开始逐渐减小。当a1=a2时,相对速度大小恒定。整个运动过程用速度时间图象描述如下。综上可得,金属框的加速度趋于恒定值,安培力也趋于恒定值,BC选项正确;金属框的速度会一直增大,导体棒到金属框bc边的距离也会一直增大,AD选项错误。故选BC。夯实成果练4.(多选)手机无线充电是比较新颖的充电方式。如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量。当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电。在充电过程中A.送电线圈中电流产生的磁场呈周期性变化B.受电线圈中感应电流产生的磁场恒定不变C.送电线圈和受电线圈通过互感现象实现能量传递D.手机和基座无需导线连接,这样传递能量没有损失【答案】AC【解析】AB.由于送电线圈输入的是正弦式交变电流,是周期性变化的,因此产生的磁场也是周期性变化的,A正确,B错误;C.根据变压器原理,原、副线圈是通过互感现象实现能量传递,因此送电线圈和受电线圈也是通过互感现象实现能量传递,C正确;D.手机与机座无需导线连接就能实现充电,但磁场能有一部分以电磁波辐射的形式损失掉,因此这样传递能量是有能量损失的,D错误。故选AC。电磁感应中的动量问题1.应用动量观点解决电磁感应综合问题可分为两类:(1)利用动量定理求感应电荷量或运动位移应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题。如:Beq\o(I,\s\up6(-))LΔt=Δp,q=eq\x\to(I)·Δt,可得q=eq\f(Δp,BL)。eq\f(B2L2\o(v,\s\up6(-)),R总)Δt=Δp,x=eq\o(v,\s\up6(-))Δt,可得x=eq\f(ΔpR总,B2L2)。(2)利用动量守恒定律分析双导体杆问题在相互平行的光滑水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒。解决此类问题往往要应用动量守恒定律。例题5.如图甲所示,两条相距l的光滑平行金属导轨位于同一竖直面(纸面)内,其上端接一阻值为R的电阻,在两导轨间OO′下方区域内有垂直导轨平面向里的匀强磁场,磁感应强度为B。现使长为l、电阻为r、质量为m的金属棒ab由静止开始自OO′位置释放,向下运动距离d后速度不再变化(棒ab与导轨始终保持良好的接触且下落过程中始终保持水平,导轨电阻不计)。(1)求棒ab在向下运动距离d过程中回路产生的总焦耳热;(2)棒ab从静止释放经过时间t0下降了eq\f(d,2),求此时刻的速度大小;(3)如图乙所示,在OO′上方区域加一面积为S的垂直于纸面向里的匀强磁场B′,棒ab由静止开始自OO′上方某一高度处释放,自棒ab运动到OO′位置开始计时,B′随时间t的变化关系B′=kt,式中k为已知常量;棒ab以速度v0进入OO′下方磁场后立即施加一竖直外力使其保持匀速运动。求在t时刻穿过回路的总磁通量和电阻R的电功率。【答案】(1)mgd-eq\f(m3g2R+r2,2B4l4)(2)gt0-eq\f(B2l2d,2mR+r)(3)Blv0t+ktSeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(Blv0+kS,R+r)))2R【解析】(1)对闭合回路:I=eq\f(Blvm,R+r)由平衡条件可知:mg=BIl解得vm=eq\f(mgR+r,B2l2)由功能关系:mgd=eq\f(1,2)mvm2+Q解得Q=mgd-eq\f(m3g2R+r2,2B4l4)。(2)由动量定理可知:(mg-BIl)t0=mv即mgt0-Blq=mv又q=eq\f(ΔΦ1,r+R)=eq\f(Bl\f(d,2),r+R)解得v=gt0-eq\f(B2l2d,2mR+r)。(3)因为Φ=Blv0t+ktS由法拉第电磁感应定律可得:E=eq\f(ΔΦ,Δt)=Blv0+kSI=eq\f(E,R+r),P=I2R解得P=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(Blv0+kS,R+r)))2R。夯实成果练5.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T的匀强磁场中,两导轨间距为L=0.5m,导轨足够长且不计电阻。金属棒a和b的质量都为m=1kg,连入导轨间的电阻Ra=Rb=1Ω。b棒静止于导轨水平部分,现将a棒从h=80cm高处自静止沿弧形导轨下滑,通过C点进入导轨的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰。求a、b两棒的最终速度,以及整个过程中b棒中产生的焦耳热(已知重力加速度g=10m/s2)。【答案】2m/s2J【解析】:设a棒下滑至C点时速度为v0,由动能定理,有mgh=eq\f(1,2)mv02-0解得v0=4m/s;此后的运动过程中,a、b两棒达到共速前,两棒所受安培力始终等大反向,因此a、b两棒组成的系统动量守恒,有mv0=(m+m)v解得a、b两棒共同的最终速度为v=2m/s,此后两棒一起做匀速直线运动;由能量守恒定律可知,整个过程中回路产生的总焦耳热为:Q=eq\f(1,2)mv02-eq\f(1,2)(m+m)v2则b棒中产生的焦耳热为Qb=eq\f(1,2)Q解得Qb=2J。例题6.两足够长且不计电阻的光滑金属轨道如图甲平行放置,间距为d=1m,在左端弧形轨道部分高h=1.25m处放置一金属杆a,弧形轨道与水平直轨道平滑连接,在水平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra=2Ω、Rb=5Ω,在水平直轨道区域有竖直向上的匀强磁场,磁感应强度B=2T。现杆b以大小为v0=5m/s的初速度开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平直轨道的过程中,通过杆b的平均电流为eq\x\to(I)=0.3A;从a下滑到水平直轨道时开始计时,a、b运动的速度—时间图像如图乙所示(以a运动方向为正方向),其中ma=2kg,mb=1kg,g=10m/s2,求:(1)杆a在弧形轨道上运动的时间;(2)杆a在水平直轨道上运动过程中通过其截面的电荷量;(3)在整个运动过程中杆b产生的焦耳热。【答案】(1)5s(2)eq\f(7,3)C(3)eq\f(115,6)J【解析】(1)杆a释放时杆b的速度大小为v0=5m/s,根据题图乙,杆a刚滑到水平直轨道时杆b的速度大小为vb=2m/s,以杆b运动的方向为正方向,对杆b运用动量定理,有-Beq\x\to(I)d·Δt=mbvb-mbv0代入数据解得Δt=5s。(2)对杆a由静止下滑到水平直轨道的过程由机械能守恒定律有magh=eq\f(1,2)mava2解得va=eq\r(2gh)=5m/s设最后a、b两杆共同的速度为v,以杆a运动的方向为正方向,由动量守恒定律得mava-mbvb=(ma+mb)v代入数据解得v=eq\f(8,3)m/s设杆a的速度从va到v的运动时间为Δt′,则由动量定理可得-Beq\x\to(I)′d·Δt′=mav-mava而q=eq\x\to(I)′·Δt′代入数据解得q=eq\f(7,3)C。(3)由能量守恒定律可知杆a、b中产生的焦耳热之和为Q=magh+eq\f(1,2)mbv02-eq\f(1,2)(mb+ma)v2=eq\f(161,6)Jb棒中产生的焦耳热为Q′=eq\f(Rb,Ra+Rb)Q=eq\f(115,6)J。夯实成果练6.如图所示,两根质量均为m=2kg的金属棒垂直放在光滑的水平导轨上,左右两部分导轨间距之比为1∶2,导轨间有大小相等但左、右两部分方向相反的匀强磁场,两棒电阻与棒长成正比,不计导轨电阻。现用250N的水平拉力F向右拉CD棒,CD棒运动s=0.5m时其上产生的焦耳热为Q2=30J,此时两棒速率之比为vA∶vC=1∶2,现立即撤去拉力F,设导轨足够长且两棒始终在不同磁场中运动,求:(1)在CD棒运动0.5m的过程中,AB棒上产生的焦耳热;(2)撤去拉力F瞬间,两棒的速度大小vA和vC;(3)撤去拉力F后,两棒最终匀速运动的速度大小vA′和vC′。【答案】(1)15J(2)4m/s8m/s(3)6.4m/s3.2m/s【解析】(1)设两棒的长度分别为l和2l,所以电阻分别为R和2R,由于电路中任何时刻电流均相等,根据焦耳定律Q=I2Rt可知Q1∶Q2=1∶2,则AB棒上产生的焦耳热Q1=15J。(2)根据能量守恒定律,有Fs=eq\f(1,2)mvA2+eq\f(1,2)mvC2+Q1+Q2又vA∶vC=1∶2,联立以上两式并代入数据得vA=4m/s,vC=8m/s。(3)撤去拉力F后,AB棒继续向左做加速运动,而CD棒向右做减速运动,当两棒切割磁感线产生的电动势大小相等时电路中电流为零,两棒开始做匀速运动,此时两棒的速度满足BLvA′=B·2LvC′即vA′=2vC′(不对过程进行分析,认为系统动量守恒是常见错误)规定水平向左为正方向,对两棒分别应用动量定理,有eq\x\to(F)A·t=mvA′-mvA,-eq\x\to(F)C·t=mvC′-mvC。因为FC=2FA,故有eq\f(vA′-vA,vC-vC′)=eq\f(1,2)联立以上各式解得vA′=6.4m/s,vC′=3.2m/s。电磁感应中的图像问题1.图像类型2.分析方法3.解答电磁感应中图像类选择题的两个常用方法排除法定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项函数法根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断例题7.如图所示,半径为的圆形区域内存在一垂直纸面向里的匀强磁场,一半径小于的圆形导线环沿着它们圆心连线的方向匀速穿过磁场区域,关于导线环中的感应电流随时间的变化关系,下列图像中(以逆时针方向为电流的正方向)最符合实际的是A. B.C. D.【答案】B【解析】圆形导线开始时进入磁场过程中,磁通量向里增加,根据楞次定律和安培定则可知,电流方向为逆时针,即为正方向;当圆形导线出磁场过程中,回路中磁通量向里减小,根据楞次定律和安培定则可知,产生的感应电流为顺时针,即为负方向;圆形导线环小于磁场的圆形面积,全部进入里面时,磁通量不变化,不产生感应电动势,电流为零,设经过t时间圆形导线的位置如图所示有效切割长度为,根据图中几何关系可得产生的感应电动势随时间先增大后减小,最大等于,进入过程中有效长度先增大后减小,故当圆形导线进入磁场时,产生感应电流大小先增大然后再减小,当离开磁场时产生感应电流大小也是先增大在减小,不是线性变化,ACD错误,B正确。故选B。夯实成果练7.(多选)如图,平行光滑金属导轨M、N固定在水平面上,处于竖直向下的匀强磁场中.完全相同的两金属棒P、Q搭放在导轨上,开始均处于静止状态.给P施加一与导轨平行的恒定拉力作用,运动中两金属棒始终与导轨垂直并与导轨接触良好.设导轨足够长,除两棒的电阻外其余电阻均不计.则两棒的速度及棒中的感应电流随时间变化的图象正确的是A.B.C.D.【答案】AD【解析】P向右做切割磁感线运动,由右手定则判断知,回路中产生逆时针的感应电流,由左手定则判断可知,Q棒所受的安培力方向向右,故Q向右做加速运动;Q向右运动后,开始阶段,两杆的速度差增大,产生回路中产生的感应电动势增大,感应电流增大,两杆所受的安培力都增大,则P的加速度减小,Q的加速度增大,当两者的加速度相等时,速度之差不变,感应电流不变,安培力不变,两杆均做加速度相同的匀加速运动.AB、开始运动时,P棒做加速度减小的加速度运动,Q棒做加速度增大的加速运动,最终做加速度相同的加速度运动,故A正确,B错误;CD、开始运动时,两棒的速度差增大,感应电动势增大,通过电流增大,最终两棒都做匀加速运动,速度差保持不变,故回路中感应电动势不变,电流恒定,故C错误,D正确.故选AD.例题8.(多选)如图所示,等腰直角三角形金属框abc右侧有一有界匀强磁场,磁场方向垂直纸面向外,ab边与磁场两边界平行,磁场宽度大于bc边的长度。现使框架沿bc边方向匀速穿过磁场区域,t=0时,c点恰好达到磁场左边界。线框中产生的感应电动势大小为E,感应电流为I(逆时针方向为电流正方向),bc两点间的电势差为Ubc,金属框的电功率为P。图中上述各量随时间变化的图像可能正确的是() B.C.D.【答案】BC【解析】根据导体棒切割磁场产生的动生电动势为可知,第一阶段匀速进磁场的有效长度均匀增大,产生均匀增大的电动势,因磁场宽度大于bc边的长度,则第二阶段线框全部在磁场中双边切割,磁通量不变,线框的总电动势为零,第三阶段匀速出磁场,有效长度均匀增大,产生均匀增大的电动势,故图像的第三阶段画错,故A错误;根据闭合电路的欧姆定律,可知第一阶段感应电流均匀增大,方向由楞次定律可得为顺时针(负值),第二阶段电流为零,第三阶段感应电流均匀增大,方向逆时针(正值),故图像正确,故B正确;由部分电路的欧姆定律,可知图像和图像的形状完全相同,故C正确;金属框的电功率为,则电流均匀变化,得到的电功率为二次函数关系应该画出开口向上的抛物线,则图像错误,故D错误。故选BC。夯实成果练8.如图甲所示,矩形导线框abcd固定在变化的磁场中,产生了如图乙所示的电流(电流方向abcda为正方向)。若规定垂直纸面向里的方向为磁场正方向,能够产生如图乙所示电流的磁场为()【答案】D【解析】由题图乙可知,0~t1内,线圈中的电流的大小与方向都不变,根据法拉第电磁感应定律可知,线圈中的磁通量的变化率相同,故0~t1内磁感应强度与时间的关系是一条斜线,A、B错误;又由于0~t1时间内电流的方向为正,即沿abcda方向,由楞次定律可知,电路中感应电流的磁场方向向里,故0~t1内原磁场方向向里减小或向外增大,D正确,C错误。1.楞次定律是下列哪个定律在电磁感应现象中的具体体现?A.电阻定律 B.库仑定律C.欧姆定律 D.能量守恒定律【答案】D【解析】楞次定律指感应电流的磁场阻碍引起感应电流的原磁场的磁通量的变化,这种阻碍作用做功将其他形式的能转变为感应电流的电能,所以楞次定律的阻碍过程实质上就是能量转化的过程.2.(多选)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理示意图如图所示。两根固定于水平面内的光滑平行金属导轨间距为L,导轨间存在垂直于导轨平面向里、磁感应强度大小为B的匀强磁场,导轨电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。电容器电容C,首先开关接1,使电容器完全充电。然后将S接至2,MN达到最大速度vm后离开导轨。这个过程中A.MN做匀加速直线运动B.通过MN的电量C.达到最大速度时电容器C两极板间的电压为0D.求出通过MN的电量q后,不可以利用的公式求出MN加速过程的位移【答案】BD【解析】A.当MN向右运动的过程中,电容器放电电流逐渐减小,况且MN切割磁感线要产生与电容器放电电流反向的感应电动势,可知MN所受安培力逐渐减小,MN做加速度减小的加速运动,选项A错误;B.当MN速度最大时,由动量定理解得选项B正确;C.达到最大速度vm时,MN上的感应电动势为电容器C两极板间的电压为选项C错误;D.过程中任一时刻电流为U′为电容器极板电压,则从式中可以看出电流不恒定,取一很短时间△t',流过MN电量为只有当U'=0时才有而本题过程中始终不满足U'=0,则不可以利用的公式求出MN加速过程的位移,选项D正确。故选BD。3.(多选)如图,条形磁铁在固定的水平闭合导体圆环正上方,从离地面高h处由静止开始下落,下落过程中始终保持竖直方向,并从圆环中心穿过,最后落在水平地面上。条形磁铁A、B两端经过线圈平面时的速度分别为v1、v2,线圈中的感应电流分别为I1、I2,电流的瞬时功率分别为P1、P2.不计空气阻力,重力加速度为g,下列说法正确的是A.从上往下看,I2的方向为顺时针B.I1:I2=v1:v2C.P1:P2=v1:v2D.磁铁落地时的速率为【答案】AB【解析】A.条形磁铁B端经过线圈平面时,穿过线圈的磁通量向下减小,根据楞次定律可知,从上往下看,I2的方向为顺时针,选项A正确;BC.条形磁铁AB端经过线圈平面时磁感应强度相同,根据E=BLv以及可知I1:I2=v1:v2,根据P=I2R可知电流的瞬时功率之比为选项B正确,C错误;D.若磁铁自由下落,则落地的速度为;而由于磁铁下落过程中有电能产生,机械能减小,则磁铁落地时的速率小于,选项D错误。故选AB。4.如图所示,垂直于纸面的匀强磁场磁感应强度为B.纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行.从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)感应电动势的大小E;(2)拉力做功的功率P;(3)ab边产生的焦耳热Q.【答案】(1);(2);(3)【解析】由导体棒切割磁感线产生电动势综合闭合电路欧姆定律和解题.(1)从ad边刚进入磁场到bc边刚要进入的过程中,只有ad边切割磁感线,所以产生的感应电动势为:;(2)线框进入过程中线框中的电流为:ad边安培力为:由于线框匀速运动,所以有拉力与安培力大小相等,方向相反,即所以拉力的功率为:联立以上各式解得:;(3)线框进入过程中线框中的电流为:进入所用的时间为:ad边的电阻为:焦耳热为:联立解得:.5.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度Ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是()A.Ua>Uc,金属框中无电流B.Ub>Uc,金属框中电流方向沿a-b-c-aC.Ubc=-eq\f(1,2)Bl2Ω,金属框中无电流D.Ubc=eq\f(1,2)Bl2Ω,金属框中电流方向沿a-c-b-a【答案】C【解析】金属框abc平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B、D错误;转动过程中bc边和ac边均切割磁感线,产生感应电动势,由右手定则判断Ua<Uc,Ub<Uc,选项A错误;由转动切割产生感应电动势的公式得Ubc=-eq\f(1,2)Bl2Ω,选项C正确.6.(多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是()【答案】AC【解析】棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=eq\f(v0,2),选项A、C均正确,B、D均错误.7.如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好.MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长、电阻忽略不计.(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W.【答案】见解析【解析】(1)设线圈中的感应电动势为E,由法拉第电磁感应定律E=eq\f(ΔΦ,Δt),则E=k ①设PQ与MN并联的电阻为R并,有R并=eq\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论