2025千题百炼-高中数学100个热点问题(三):第75炼 几何问题的转换含答案_第1页
2025千题百炼-高中数学100个热点问题(三):第75炼 几何问题的转换含答案_第2页
2025千题百炼-高中数学100个热点问题(三):第75炼 几何问题的转换含答案_第3页
2025千题百炼-高中数学100个热点问题(三):第75炼 几何问题的转换含答案_第4页
2025千题百炼-高中数学100个热点问题(三):第75炼 几何问题的转换含答案_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025千题百炼——高中数学100个热点问题(三):第75炼几何问题的转换含答案第75炼几何问题的转换一、基础知识:在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系2、常见几何问题的转化:(1)角度问题:①若与直线倾斜角有关,则可以考虑转化为斜率②若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定(2)点与圆的位置关系①可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大②若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,为钝角(再转为向量:;若点在圆上,则为直角();若点在圆外,则为锐角()(3)三点共线问题①通过斜率:任取两点求出斜率,若斜率相等,则三点共线②通过向量:任取两点确定向量,若向量共线,则三点共线(4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算:,则共线;(5)平行(共线)线段的比例问题:可转化为向量的数乘关系(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点,则的重心(2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图):在的角平分线上(4)是以为邻边的平行四边形的顶点(5)是以为邻边的菱形的顶点:在垂直平分线上(6)共线线段长度的乘积:若共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:,二、典型例题:例1:如图:分别是椭圆的左右顶点,为其右焦点,是的等差中项,是的等比中项(1)求椭圆的方程(2)已知是椭圆上异于的动点,直线过点且垂直于轴,若过作直线,并交直线于点。证明:三点共线解:(1)依题意可得:是的等差中项是的等比中项椭圆方程为:(2)由(1)可得:设,设,联立直线与椭圆方程可得:另一方面,因为,联立方程:三点共线例2:已知椭圆的右焦点为,为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在直线交椭圆于,两点,且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.解:(1)椭圆方程为:(2)设,由(1)可得:为△的垂心设由为△的垂心可得:①因为在直线上,代入①可得:即②考虑联立方程:得.,.代入②可得:解得:或当时,△不存在,故舍去当时,所求直线存在,直线的方程为小炼有话说:在高中阶段涉及到三角形垂心的性质,为垂心与三角形顶点的连线垂直底边,所以对垂心的利用通常伴随着垂直条件,在解析几何中即可转化为向量的坐标运算(或是斜率关系)例3:如图,椭圆的一个焦点是,为坐标原点.(1)若椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(2)设过点且不垂直轴的直线交椭圆于两点,若直线绕点任意转动,恒有,求的取值范围.解:(1)由图可得:由正三角形性质可得:椭圆方程为:(2)设,为钝角联立直线与椭圆方程:,整理可得:恒成立即恒成立解得:的取值范围是例4:设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且椭圆上的点到右焦点距离的最小值为(1)求椭圆的方程;(2)设为直线上不同于点的任意一点,若直线分别与椭圆相交于异于的点,证明:点在以为直径的圆内解:(1)依题意可得,且到右焦点距离的最小值为可解得:椭圆方程为(2)思路:若要证在以为直径的圆内,只需证明为钝角,即为锐角,从而只需证明,因为坐标可求,所以只要设出直线(斜率为),联立方程利用韦达定理即可用表示出的坐标,从而可用表示。即可判断的符号,进而完成证明解:由(1)可得,设直线的斜率分别为,,则联立与椭圆方程可得:,消去可得:,即设,因为在直线上,所以,即为锐角,为钝角在以为直径的圆内例5:如图所示,已知过抛物线的焦点的直线与抛物线相交于两点,与椭圆的交点为,是否存在直线使得?若存在,求出直线的方程,若不存在,请说明理由解:依题意可知抛物线焦点,设,不妨设则设考虑联立直线与抛物线方程:,消去可得:①联立直线与椭圆方程:,整理可得:②由①②可得:,解得:所以存在满足条件的直线,其方程为:例6:在平面直角坐标系中,已知抛物线的准线方程为,过点作抛物线的切线,切点为(异于点),直线过点与抛物线交于两点,与直线交于点(1)求抛物线的方程(2)试问的值是否为定值?若是,求出定值;若不是,请说明理由解:(1)由准线方程可得:抛物线方程:(2)设切点,抛物线为切线斜率为切线方程为:,代入及可得:,解得:(舍)或设共线且在轴上联立和抛物线方程:,整理可得:再联立直线方程:例7:在中,的坐标分别是,点是的重心,轴上一点满足∥,且(1)求的顶点的轨迹的方程(2)直线与轨迹相交于两点,若在轨迹上存在点,使得四边形为平行四边形(其中为坐标原点),求的取值范围解:(1)设由是的重心可得:由轴上一点满足平行关系,可得由可得:化简可得:的轨迹的方程为:(2)四边形为平行四边形设在椭圆上①因为在椭圆上,所以,代入①可得:②联立方程可得:代入②可得:有两不等实根可得:,即,代入另一方面:或例8:已知椭圆的离心率为,直线过点,且与椭圆相切于点(1)求椭圆的方程(2)是否存在过点的直线与椭圆交于不同的两点,使得?若存在,求出直线的方程;若不存在,请说明理由解(1)椭圆方程化为:过设直线联立直线与椭圆方程:消去可得:整理可得:与椭圆相切于椭圆方程为:,且可解得(2)思路:设直线为,,由(1)可得:,再由可知,若要求得(或证明不存在满足条件的),则可通过等式列出关于的方程。对于,尽管可以用两点间距离公式表示出,但运算较为复杂。观察图形特点可知共线,从而可想到利用向量数量积表示线段的乘积。因为同向,所以。写出的坐标即可进行坐标运算,然后再联立与椭圆方程,运用韦达定理整体代入即可得到关于的方程,求解即可解:由题意可知直线斜率存在,所以设直线由(1)可得:共线且同向联立直线与椭圆方程:消去并整理可得:,代入,可得:可解得:,另一方面,若方程有两不等实根则解得:符合题意直线的方程为:,即:或例9:设椭圆的左,右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴与点,且(1)求椭圆的离心率(2)若过三点的圆恰好与直线相切,求椭圆的方程(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,请说明理由解:(1)依题意设由可得:(2)由(1)可得:的外接圆的直径为,半径设为,圆心由圆与直线相切可得:解得:椭圆方程为(3)由(2)得:设直线设,若为邻边的平行四边形是菱形则为垂直平分线上的点设中点的中垂线方程为:,即代入可得:联立方程:所以存在满足题意的,且的取值范围是例10:已知抛物线:的焦点为,直线与轴的交点为,与抛物线的交点为,且(1)求抛物线的方程(2)过的直线与抛物线相交于两点,若垂直平分线与相交于两点,且四点在同一个圆上,求的方程解:(1)设,可的且解得抛物线(2)由(1)可得可设直线联立方程设,则有的中点且由直线可得的斜率为设整理可得:与联立消去可得:设的中点,因为共圆,所以整理后可得:的方程为:或第76炼圆锥曲线中的存在性问题一、基础知识1、在处理圆锥曲线中的存在性问题时,通常先假定所求的要素(点,线,图形或是参数)存在,并用代数形式进行表示。再结合题目条件进行分析,若能求出相应的要素,则假设成立;否则即判定不存在2、存在性问题常见要素的代数形式:未知要素用字母代替(1)点:坐标(2)直线:斜截式或点斜式(通常以斜率为未知量)(3)曲线:含有未知参数的曲线标准方程3、解决存在性问题的一些技巧:(1)特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其它情况均成立。(2)核心变量的选取:因为解决存在性问题的核心在于求出未知要素,所以通常以该要素作为核心变量,其余变量作为辅助变量,必要的时候消去。(3)核心变量的求法:①直接法:利用条件与辅助变量直接表示出所求要素,并进行求解②间接法:若无法直接求出要素,则可将核心变量参与到条件中,列出关于该变量与辅助变量的方程(组),运用方程思想求解。二、典型例题:例1:已知椭圆的离心率为,过右焦点的直线与相交于两点,当的斜率为时,坐标原点到的距离为。(1)求的值(2)上是否存在点,使得当绕旋转到某一位置时,有成立?若存在,求出所有的的坐标和的方程,若不存在,说明理由解:(1)则,依题意可得:,当的斜率为时解得:椭圆方程为:(2)设,当斜率存在时,设联立直线与椭圆方程:消去可得:,整理可得:因为在椭圆上当时,,当时,,当斜率不存在时,可知,,则不在椭圆上综上所述:,或,例2:过椭圆的右焦点的直线交椭圆于两点,为其左焦点,已知的周长为8,椭圆的离心率为(1)求椭圆的方程(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程;若不存在,请说明理由解:(1)由的周长可得:椭圆(2)假设满足条件的圆为,依题意,若切线与椭圆相交,则圆应含在椭圆内若直线斜率存在,设,与圆相切即联立方程:对任意的均成立将代入可得:存在符合条件的圆,其方程为:当斜率不存在时,可知切线为若,则符合题意若,同理可得也符合条件综上所述,圆的方程为:例3:已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形(1)求椭圆的方程(2)若分别是椭圆长轴的左,右端点,动点满足,连接,交椭圆于点,证明是定值(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点。若存在,求出点的坐标;若不存在,请说明理由解:(1)四边形是边长为2的正方形可得:椭圆方程为(2)由椭圆方程可得:,由可设,,与椭圆方程联立可得:由韦达定理可知:代入直线可得:设若以为直径的圆恒过直线的交点,则恒成立,存在定点例4:设为椭圆的右焦点,点在椭圆上,直线与以原点为圆心,以椭圆的长半轴长为半径的圆相切(1)求椭圆的方程(2)过点的直线与椭圆相交于两点,过点且平行于的直线与椭圆交于另一点,问是否存在直线,使得四边形的对角线互相平分?若存在,求出的方程;若不存在,说明理由解:(1)与圆相切将代入椭圆方程可得:椭圆方程为:(2)由椭圆方程可得:设直线,则联立直线与椭圆方程:消去可得:同理:联立直线与椭圆方程:消去可得:因为四边形的对角线互相平分四边形为平行四边形解得:存在直线时,四边形的对角线互相平分例5:椭圆的左右焦点分别为,右顶点为,为椭圆上任意一点,且的最大值的取值范围是,其中(1)求椭圆的离心率的取值范围(2)设双曲线以椭圆的焦点为顶点,顶点为焦点,是双曲线在第一象限上任意一点,当取得最小值时,试问是否存在常数,使得恒成立?若存在,求出的值;若不存在,请说明理由解:(1)设由可得:代入可得:(2)当时,可得:双曲线方程为,,设,当轴时,因为所以,下面证明对任意点均使得成立考虑由双曲线方程,可得:结论得证时,恒成立例6:如图,椭圆的离心率是,过点的动直线与椭圆相交于两点,当直线平行于轴时,直线被椭圆截得的线段长为(1)求椭圆的方程(2)在平面直角坐标系中,是否存在与点不同的定点,使得对于任意直线,恒成立?若存在,求出点的坐标;若不存在,请说明理由解:(1)椭圆方程为由直线被椭圆截得的线段长为及椭圆的对称性可得:点在椭圆上椭圆方程为(2)当与轴平行时,由对称性可得:即在的中垂线上,即位于轴上,设当与轴垂直时,则可解得或不重合下面判断能否对任意直线均成立若直线的斜率存在,设,联立方程可得:由可想到角平分线公式,即只需证明平分只需证明①因为在直线上,代入①可得:联立方程可得:成立平分由角平分线公式可得:例7:椭圆的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点(1)求椭圆的方程(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于1?若存在,求出这两个定点的坐标;如果不存在,请说明理由解:由椭圆可知:为直径的圆经过由在椭圆上,代入椭圆方程可得:椭圆方程为(2)假设存在轴上两定点,设直线所以依题意:①因为直线与椭圆相切,联立方程:由直线与椭圆相切可知化简可得:,代入①可得:,依题意可得:无论为何值,等式均成立所以存在两定点:例8:已知椭圆的左右焦点分别为,点是上任意一点,是坐标原点,,设点的轨迹为(1)求点的轨迹的方程(2)若点满足:,其中是上的点,且直线的斜率之积等于,是否存在两定点,使得为定值?若存在,求出定点的坐标;若不存在,请说明理由(1)设点的坐标为,点的坐标为,则由椭圆方程可得:且代入到可得:(2)设点,设直线的斜率分别为,由已知可得:考虑是上的点即的轨迹方程为,由定义可知,到椭圆焦点的距离和为定值为椭圆的焦点所以存在定点例9:椭圆的焦点到直线的距离为,离心率为,抛物线的焦点与椭圆的焦点重合,斜率为的直线过的焦点与交于,与交于(1)求椭圆及抛物线的方程(2)是否存在常数,使得为常数?若存在,求出的值;若不存在,请说明理由解:(1)设的公共焦点为(2)设直线,与椭圆联立方程:直线与抛物线联立方程:是焦点弦若为常数,则例10:如图,在平面直角坐标系中,椭圆的离心率为,直线与轴交于点,与椭圆交于两点,当直线垂直于轴且点为椭圆的右焦点时,弦的长为(1)求椭圆的方程(2)是否存在点,使得为定值?若存在,请求出点的坐标,并求出该定值;若不存在,请说明理由解:(1)依题意可得:当与轴垂直且为右焦点时,为通径(2)思路:本题若直接用用字母表示坐标并表示,则所求式子较为复杂,不易于计算定值与的坐标。因为要满足所有直线,所以考虑先利用特殊情况求出点及定值,再取判定(或证明)该点在其它直线中能否使得为定值。解:(2)假设存在点,设若直线与轴重合,则若直线与轴垂直,则关于轴对称设,其中,代入椭圆方程可得:,可解得:若存在点,则。若,设设,与椭圆联立方程可得:,消去可得:,同理:代入可得:所以为定值,定值为若,同理可得为定值综上所述:存在点,使得为定值三、历年好题精选1、已知中心在原点,焦点在坐标轴上的椭圆过点,离心率为,过直线上一点引椭圆的两条切线,切点分别是(1)求椭圆的方程(2)若在椭圆上的任一点处的切线方程是,求证:直线恒过定点,并求出定点的坐标(3)是否存在实数,使得恒成立?(点为直线恒过的定点),若存在,求出的值;若不存在,请说明理由2、已知椭圆的一个焦点与抛物线的焦点重合,是椭圆上的一点(1)求椭圆的方程(2)设分别是椭圆的左右顶点,是椭圆上异于的两个动点,直线的斜率之积为,设与的面积分别为,请问:是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由3、已知椭圆经过点,离心率为,左,右焦点分别为和(1)求椭圆的方程(2)设椭圆与轴负半轴交点为,过点作斜率为的直线,交椭圆于两点(在之间),为中点,并设直线的斜率为①证明:为定值②是否存在实数,使得?如果存在,求直线的方程;如果不存在,请说明理由4、已知圆,定点,点为圆上的动点,点在上,点在上,且满足(1)求点的轨迹的方程(2)过点作直线,与曲线交于两点,是坐标原点,设,是否存在这样的直线,使得四边形的对角线相等(即)?若存在,求出直线的方程;若不存在,试说明理由5、(2014,福建)已知双曲线的两条渐近线分别为,(1)求双曲线的离心率(2)如图,为坐标原点,动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论