2025千题百炼-高考数学100个热点问题(一):第21炼 多元不等式的证明含答案_第1页
2025千题百炼-高考数学100个热点问题(一):第21炼 多元不等式的证明含答案_第2页
2025千题百炼-高考数学100个热点问题(一):第21炼 多元不等式的证明含答案_第3页
2025千题百炼-高考数学100个热点问题(一):第21炼 多元不等式的证明含答案_第4页
2025千题百炼-高考数学100个热点问题(一):第21炼 多元不等式的证明含答案_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025千题百炼——高考数学100个热点问题(一):第21炼多元不等式的证明含答案第21炼多元不等式的证明多元不等式的证明是导数综合题的一个难点,其困难之处如何构造合适的一元函数,本章节以一些习题为例介绍常用的处理方法。一、基础知识1、在处理多元不等式时起码要做好以下准备工作:(1)利用条件粗略确定变量的取值范围(2)处理好相关函数的分析(单调性,奇偶性等),以备使用2、若多元不等式是一个轮换对称式(轮换对称式:一个元代数式,如果交换任意两个字母的位置后,代数式不变,则称这个代数式为轮换对称式),则可对变量进行定序3、证明多元不等式通常的方法有两个(1)消元:①利用条件代入消元②不等式变形后对某多元表达式进行整体换元(2)变量分离后若结构相同,则可将相同的结构构造一个函数,进而通过函数的单调性与自变量大小来证明不等式(3)利用函数的单调性将自变量的不等关系转化为函数值的不等关系,再寻找方法。二、典型例题:例1:已知,其中图像在处的切线平行于轴(1)确定与的关系(2)设斜率为的直线与的图像交于,求证:解:(1),依题意可得:(2)思路:,所证不等式为即,进而可将视为一个整体进行换元,从而转变为证明一元不等式解:依题意得,故所证不等式等价于:令,则只需证:先证右边不等式:令在单调递减即对于左边不等式:令,则在单调递增小炼有话说:(1)在证明不等式时,由于独立取值,无法利用等量关系消去一个变量,所以考虑构造表达式:使得不等式以为研究对象,再利用换元将多元不等式转变为一元不等式(2)所证不等式为轮换对称式时,若独立取值,可对定序,从而增加一个可操作的条件例2:已知函数.(1)求的单调区间和极值;(2)设,且,证明:解:(1)定义域为令解得:∴的单调增区间是,单调减区间是的极小值为,无极大值(2)思路:所证不等式等价于证,轮换对称式可设,进而对不等式进行变形,在考虑能否换元减少变量证明:不妨设(由于定序,去分母避免了分类讨论)(观察两边同时除以,即可构造出关于的不等式)两边同除以得,令,则,即证:令令,(再次利用整体换元),在上单调递减,所以即,即恒成立∴在上是减函数,所以∴得证所以成立小炼有话说:(1)本题考验不等式的变形,对于不等式而言,观察到每一项具备齐次的特征(不包括对数),所以同除以,结果为或者1,观察对数的真数,其分式也具备分子分母齐次的特点,所以分子分母同除以,结果为或者1,进而就将不等式化为以为核心的不等式(2)本题进行了两次整体换元,第一次减少变量个数,第二次简化了表达式例3:已知函数(a∈R).(1)若函数在上是增函数,求实数的取值范围;(2)如果函数恰有两个不同的极值点,证明:.解:(1)是上是增函数(注意:单调递增→导数值)设令解得故在单调递减,在单调递增(2)思路:,。所证不等式含有3个字母,考虑利用条件减少变量个数。由为极值点可得从而可用表示,简化所证不等式。解:依题意可得:,是极值点两式相减可得:所证不等式等价于:,不妨设两边同除以可得:,(此为关键步骤:观察指数幂的特点以及分式的分母,化不同为相同,同除以使得多项呈的形式)从而考虑换元减少变量个数。令所证不等式只需证明:,设由(2)证明可得:在单调递减,证明完毕原不等式成立即小炼有话说:本题第(3)问在处理时首先用好极值点的条件,利用导数值等于0的等式消去,进而使所证不等式变量个数减少。最大的亮点在于对的处理,此时对数部分无法再做变形,两边取指数,而后同除以,使得不等式的左右都是以为整体的表达式,再利用整体换元转化为一元不等式。例4:已知(1)讨论的单调性(2)设,求证:解:(1)定义域令,即①则恒成立,为增函数②则,恒成立,为增函数③时,当,则恒成立,为减函数当时,解得:↗↘(2)思路:所证不等式含绝对值,所以考虑能否去掉绝对值,由(1)问可知单调递减,故只需知道的大小即可,观察所证不等式为轮换对称式,且任取,进而可定序,所证不等式,即,发现不等式两侧为关于的同构式,故可以将同构式构造一个函数,从而证明新函数的单调性即可。解:不妨设,,所以由第(1)问可得单调递减,所证不等式等价于:,令,只需证明单调递减即可。设方程在单调递减。即所证不等式成立小炼有话说:同构式以看作是将不同的变量放入了同一个表达式,从而可将这个表达式视为一个函数,表达式的大小与变量大小之间的关系靠函数的单调性进行联结。将不等式转化为函数单调性的问题。双变量的同构式在不等式中并不常遇到,且遇且珍惜。例5:已知函数.(1)当时,讨论函数在上的单调性;(2)如果是函数的两个零点,为函数的导数,证明:解:(1)可判断在单调递减在单调递减(2)思路:可得:,含有三个字母,考虑利用条件减少字母的个数。由可得:两式相减便可用表示,即,代入可得:从而考虑换元法将多元解析式转变为一元解析式进行证明解:是函数的两个零点只需证,令则设下面证恒成立在单调递减,即小炼有话说:(1)体会在用表示时为什么要用两个方程,而不是只用来表示?如果只用或进行表示,则很难处理,用两个变量表示,在代入的时候有项,即可以考虑利用换元法代替,这也体现出双变量换元时在结构上要求“平衡”的特点(2)在这一步中,对项的处理可圈可点,第三问的目的落在判断的符号,而符号为负,且在解析式中地位多余(难以化成),所以单拿出来判断符号,从而使讨论的式子得到简化且能表示为的表达式例6:(2010年天津,21)已知函数(1)求函数的单调区间和极值(2)已知函数的图像与函数的图像关于对称,证明当时,(3)如果,且,求证:解:(1)令的单调区间为:↗↘的极大值为,无极小值(2)解:与关于轴对称的函数为所证不等式等价于证:设在单调递增即(3)思路:所给条件,但很难与找到联系。首先考虑的范围,由(1)可得是极值点,应在的两侧,观察已知和求证均为的轮换对称式,所以可设,进而,既然无法直接从条件找联系,不妨从另一个角度尝试。已知条件给的是函数值,所证不等式是关于自变量的,,而,根据的单调区间可发现同在单调递增区间中,进而与函数值找到联系由可得所证不等式等价于,刚好使用第二问的结论。解:,是极值点在的两侧,不妨设所证不等式等价于而在单调递增只需证明由第(2)问可得成立得证小炼有话说:(1)本题第(3)问是利用函数的单调性,将自变量的不等式转化为函数值的不等关系,进而与前面问题找到联系。在处理此类问题感到无法入手时,不妨在确定变量的范围后适当将其赋予一个函数背景,扩展不等式变形的空间(2)本题第(2)(3)两问存在图形背景。首先说第三问:所证不等式,即证的中点横坐标大于1,而恰好是的极值点。可理解为与一条水平线交于,而说明什么?说明如果是以极大值点为起点向两边走,左边下降的快而右边下降的慢!从函数角度来看说明增长快下降慢(如图)。那么如何使用代数方法说明函数快增长慢下降的特点呢?本题的第二问提供了一个方法,就是以极值点所在竖直线为对称轴,找的对称图形(虚线),这样便把极值点左边的情况对称到右边来(即),由于对称轴右边都是从起开始下降,那么通过证明对称轴右侧原图像在对称图像的上方即可说明增减的相对快慢。例7:已知函数(1)求的极值(2)若对任意的均成立,求的取值范围(3)已知且,求证:解:(1)令解得在单调增,在单调递减有极大值,无极小值(2)(参变分离法)设(即时的)(3)思路:所求证不等式无法直接变形,联系的特点可以考虑不等式两边取对数,即,由且可得,联系第(2)问的函数即可寻找与的联系了。解:,考虑在单调递增同理:即例8:已知函数(1)函数有两个不同的零点,求实数的取值范围(2)在(1)的条件下,求证:解:(1)有两个不同的零点,即有两个不同的根设令可得:在单调递减,在单调递增且时,,(2)思路一:所证不等式中含有两个变量,考虑利用条件消元将其转化为一元不等式,由零点可知,从中可以找到,即,下面只需用将消掉即可,仍然利用方程组两式作差可得,从而,只需证明,两边同除以,即可利用换元将所证不等式转为一元不等式来进行证明解:不妨设由已知可得:即只需证明:,在方程可得:只需证明:即令,则,所以只需证明不等式:①设在单调递增在单调递增,即不等式①得证即思路二:参照例题6的证明方法,构造一个单调的函数,进而将自变量的不等式转化为函数值的不等式进行证明。由(1)可知在构造的函数中,有,且在单调递减,在单调递增,所以考虑使用来进行转换,所证不等式,通过(1)中的数形结合可知,从而有,所以所证不等式转化为,即,转化为关于的一元不等式,再构造函数证明即可解:所证不等式因为有两不同零点满足方程,由(1)可得:考虑设,由(1)可得:在单调递减,在单调递增结合的单调性可知:只需证明所以只需证明:即证明:设,则,则,则单调递减单调递减单调递减即得证得证,从而有例9:已知函数,其中常数(1)求的单调区间(2)已知,若,且满足,试证明:解:(1)定义域令即① ↗↘↗②恒成立在单调递增③ ↗↘↗(2)思路一:分别用表示出,并利用进行代换,然后判断的符号即可。解:,,所以只需证明:即只需证若要证,只需证明:即可下面判断的范围单调递减,不妨设得证即不等式得证思路二:在证明时,固定(视为一个参数),将作为一个整体视为自变量,构造函数判断符号解:考虑证明同思路一判断出令设在单调递增即不等式得证小炼有话说:(1)思路一的方法比较直接,在整理完后通分判断符号。其中证明借鉴了例6的思路,通过单调性将自变量的大小关系转化为函数值的大小关系,构造函数证明。(2)思路二为我们提供了一个证明多元不等式的方法:可固定其中一个变量,视其为参数,以另一个变量作为自变量构造函数,计算出最值,对原表达式进行一次放缩,然后再将先前固定的变量视为自变量构造函数证明不等式,这种方法也称为调整法(3)第(3)问中对范围的判定是一个亮点,利用极值点与单调性来进行判定。此方法通过图像更为直观,所以在判断变量范围时可以考虑做出草图,然后观察其大概位置,在用代数语言进行说明和证明。例10:已知函数,其中(1)当时,求的极小值(2)当时,设为的导函数,若函数有两个不同的零点,且,求证:解:(1)①当时,恒成立为增函数,无极小值②当时,令,解得在单调递减,在单调递增有极小值为(2)思路:,可得①,,考虑减少变量个数。由是零点可得:,可得,若直接代入不等式消去,则不等式过于复杂。且之间很难通过变形构造函数,所以考虑分别判断的取值范围,寻找它们之间的“中间量”。构造函数,通过判断单调性可得到,从而,而,不利于通过换元减少变量个数,但观察到,从而,可通过换元构造函数,再分析其最值即可得到,从而通过桥梁“0”证明不等式解:有两个不同的零点考虑:,设,因为在单调递减,在单调递增再考虑设,则设在单调递减,进而综上可得:第22炼恒成立问题——参变分离法一、基础知识:1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。例如:,等(2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。(可参见”恒成立问题——最值分析法“中的相关题目)4、参变分离后会出现的情况及处理方法:(假设为自变量,其范围设为,为函数;为参数,为其表达式)(1)若的值域为①,则只需要,则只需要②,则只需要,则只需要③,则只需要,则只需要④,则只需要,则只需要(2)若的值域为①,则只需要,则只需要(注意与(1)中对应情况进行对比)②,则只需要,则只需要(注意与(1)中对应情况进行对比)③,则只需要(注意与(1)中对应情况进行对比),则只需要④,则只需要(注意与(1)中对应情况进行对比),则只需要5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了。(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。二、典型例题:例1:已知函数,若恒成立,则实数的取值范围是_______思路:首先转化不等式,,即恒成立,观察不等式与便于分离,考虑利用参变分离法,使分居不等式两侧,,若不等式恒成立,只需,令(解析式可看做关于的二次函数,故配方求最值),所以答案:例2:已知函数,若在上恒成立,则的取值范围是_________思路:恒成立的不等式为,便于参数分离,所以考虑尝试参变分离法解:,其中只需要,令(导函数无法直接确定单调区间,但再求一次导即可将变为,所以二阶导函数的单调性可分析,为了便于确定的符号,不妨先验边界值),,(判断单调性时一定要先看定义域,有可能会简化判断的过程)在单调递减,在单调递减答案:小炼有话说:求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号。例3:若对任意,不等式恒成立,则实数的范围是.思路:在本题中关于的项仅有一项,便于进行参变分离,但由于,则分离参数时要对的符号进行讨论,并且利用的符号的讨论也可把绝对值去掉,进而得到的范围,,当时,,而;当时,不等式恒成立;当时,,而综上所述:答案:小炼有话说:(1)不等式含有绝对值时,可对绝对值内部的符号进行分类讨论,进而去掉绝对值,在本题中对进行符号讨论一举两得:一是去掉了绝对值,二是参变分离时确定不等号的是否变号。(2)在求解析式最值时根据式子特点巧妙使用均值不等式,替代了原有的构造函数求导出最值的方法,简化了运算。(3)注意最后确定的范围时是三部分取交集,因为是对的取值范围进行的讨论,而无论取何值,的值都要保证不等式恒成立,即要保证三段范围下不等式同时成立,所以取交集。例4:设函数,对任意的恒成立,则实数的取值范围是________________思路:先将不等式进行化简可得:,即,便于进行分离,考虑不等式两边同时除以,可得:,,最小值,即解得:答案:小炼有话说:本题不等式看似复杂,化简后参变分离还是比较容易的,从另一个角度看本题所用不等式为二次不等式,那么能否用二次函数图像来解决呢?并不是一个很好的办法,因为二次项系数为关于的表达式且过于复杂,而对称轴的形式也不利于下一步的计算。所以在解题时要注意观察式子的结构,能够预想到某种方法所带来的运算量,进而做出选择例5:若不等式对恒成立,则实数的取值范围是.思路:,令,对绝对值内部进行符号讨论,即,而在单调递增,在单调递减,可求出答案:例6:设正数,对任意,不等式恒成立,则正数的取值范围是()思路:先将放置不等号一侧,可得,所以,先求出的最大值,,可得在单调递增,在单调递减。故,所以若原不等式恒成立,只需,不等式中只含,可以考虑再进行一次参变分离,,则只需,,所以解得:答案:例7:已知函数,若对于任意的,不等式恒成立,求实数的取值范围思路:含有参数,而为常系数函数,且能求出最值,所以以为入手点:若恒成立,则只需。可求出,进而问题转化为,恒成立,此不等式不便于利用参变分离求解,考虑利用最值法分类讨论解决解:恒成立只需由得:,令解得:在单调递减,在单调递增,恒成立即只需当时,令则,与矛盾当时,解得在单调递增,在单调递减综上所述:小炼有话说:(1)在例6,例7中对于多变量恒成立不等式,都是以其中一个函数作为突破口求得最值,进而消元变成而二元不等式,再用处理恒成立的解决方法解决。(2)在本题处理恒成立的过程中,对令这个反例,是通过以下两点确定的:①时估计函数值的变化,可发现当时,(平方比一次函数增长的快)②在选取特殊值时,因为发现时,已然为正数,所以只需前面两项相消即可,所以解方程,刚好符合反例的要求。例8:若不等式对任意正数恒成立,则正数的最小值是()A.B.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论