2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题含解析_第1页
2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题含解析_第2页
2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题含解析_第3页
2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题含解析_第4页
2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省吉安市峡江县数学八年级第一学期期末达标检测模拟试题模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一副三角板如图摆放,则的度数为()A. B. C. D.2.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A. B. C. D.3.若,,则的值为()A.1 B. C.6 D.4.多项式与多项式的公因式是()A. B. C. D.5.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.6.下列各数:3.141,−227,8,π,4.21·7A.1个 B.2 C.3个 D.4个7.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,208.下列图案属于轴对称图形的是()A. B. C. D.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.1610.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°11.已知的外角中,若,则等于()A.50° B.55° C.60° D.65°12.下列函数中不经过第四象限的是()A.y=﹣x B.y=2x﹣1 C.y=﹣x﹣1 D.y=x+1二、填空题(每题4分,共24分)13.已知点P(1﹣a,a+2)关于y轴的对称点在第二象限,则a的取值范围是______.14.如图所示,,,,,则的长为__________.15.如图,已知在中已知,,,且,,,,…,,则的值为__________.16.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=8,则△ABC的周长为______.17.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.18.如图,若∠1=∠D=39°,∠C=51°,则∠B=___________°;三、解答题(共78分)19.(8分)如图,直线相交于点,分别是直线上一点,且,,点分别是的中点.求证:.20.(8分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.21.(8分)(1)计算:①;②(2)解方程组:22.(10分)如图,在中,,直线垂直平分,交于点,交于点,且,求的长.23.(10分)计算(1)(x﹣3)(x+3)﹣6(x﹣1)2(2)a5•a4•a﹣1•b8+(﹣a2b2)4﹣(﹣2a4)2(b2)424.(10分)如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.25.(12分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.26.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据三角板的特点可得∠2和∠3的度数,然后利用三角形内角和定理求出∠1即可解决问题.【详解】解:如图,根据三角板的特点可知:∠2=60°,∠3=45°,∴∠1=180°-60°-45°=75°,∴∠α=∠1=75°,故选:C.【点睛】本题主要考查了三角形内角和定理,熟知三角形的内角和等于180°是解题的关键.2、D【解析】试题分析:根据平行线的性质,可得∠3=∠1,根据两直线垂直,可得所成的角是∠3+∠2=90°,根据角的和差,可得∠2=90°-∠3=90°-60°=30°.故选D.考点:平行线的性质3、C【分析】原式首先提公因式,分解后,再代入求值即可.【详解】∵,,∴.故选:C.【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.4、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解5、C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】A、不是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选A.【点睛】本题考查了轴对称图形的识别,解决本题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,据此分析即可.6、C【解析】无理数就是无限不循环小数,依据定义即可判断.【详解】8=22,根据无理数的定义可知无理数有:8,π,0.1010010001……,故答案为【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.7、D【分析】根据众数和中位数的定义即可得到结果.【详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【点睛】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.8、C【解析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点睛】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么就是轴对称图形.9、C【详解】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以都是等边三角形.所以所以六边形的周长为3+1+4+2+2+3=15;故选C.10、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.11、B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD是△ABC的一个外角,

∴∠ACD=∠B+∠A,

∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,

故选:B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12、D【解析】试题解析:A.,图象经过第二、四象限.B.,图象经过第一、三、四象限.C.,图象经过第二、三、四象限.D.,图象经过第一、二、三象限.故选D.二、填空题(每题4分,共24分)13、.【解析】试题分析:点P关于轴的对称点在第二象限,在P在第一象限,则考点:关于轴、轴对称的点的坐标.14、20【分析】在Rt△ABC中根据勾股定理求出AB的长,再求出BD的长即可.【详解】解:∵∠ABC=90°,AC=13,BC=5,∴AB===12,∵∠BAD=90°,AD=16,

∴BD===20.故答案为:20.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15、【分析】根据题意,由30°直角三角形的性质得到,,……,然后找出题目的规律,得到,即可得到答案.【详解】解:∵,,∴,∵,∴,∴,∴,∴,∴;同理可得:;……∴;当时,有;故答案为:.【点睛】本题考查了30°直角三角形的性质,解题的关键是观察图形找出图形中线段之间的关系,得到,从而进行解题.16、1【分析】利用基本作图得到MN垂直平分AB,则DA=DB,利用等线段代换得到BC+AC=10,然后计算△ABC的周长.【详解】由作法得MN垂直平分AB,∴DA=DB,∵△ADC的周长为10,∴DA+CD+AC=10,∴DB+CD+AC=10,即BC+AC=10,∴△ABC的周长=BC+AC+AB=10+8=1.故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线),也考查了线段垂直平分线的性质.17、【分析】连接DE,过E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,求得DH,进而得出OH,即可求解.【详解】如图所示,连接,过作于,于,于,是的中点,,,,,,,,中,,,点的横坐标是.【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18、129°【解析】∵∠1=∠D=39°,∴AB∥CD.∵∠C=51°,∴∠B=180°-51°=129°.三、解答题(共78分)19、证明见解析.【分析】根据直角三角形的性质得到DM=BM,根据等腰三角形的三线合一证明结论.【详解】解:证明:∵BC⊥a,DE⊥b∴△EBC和△EDC都是直角三角形∵M为CE中点,∴DM=EC,BM=EC∴DM=BM∵N是DB的中点∴MN⊥BD.【点睛】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.20、(1)证明见解析;(2)结论:BD=2CF.理由见解析;(3).【分析】(1)欲证明BF=AD,只要证明△BCF≌△ACD即可;(2)结论:BD=2CF.如图2中,作EH⊥AC于H.只要证明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解决问题;(3)利用(2)中结论即可解决问题.【详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、(1)①-2;②;(2)【分析】(1)根据二次根式的运算法则即可求解;(2)根据加减消元法即可求解.【详解】(1)①===3-5=-2②==(2)解①×2得4x-2y=-8③③-②得3y=15解得y=5把y=5代入①得2x-5=-4解得x=∴原方程组的解为.【点睛】此题主要考查二次根式与方程组的求解,解题的关键是熟知其运算法则.22、【分析】首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,可求得CD、BD的长,进而得出BC的长.【详解】连接AD.∵DE垂直平分AC,∴AD=CD,∠DEC=90°,∴∠DAC=∠C.∵在△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C30°,∴∠DAC=∠C=∠B=30°,∴∠ADB=∠DAC+∠C=60°,∴∠BAD=180°﹣∠B﹣∠ADB=90°,在Rt△CDE中,∠C=30°,DE=2cm,∴CD=2DE=4cm,∴AD=CD=4cm,在Rt△BAD中,∠B=30°,∴BD=2AD=8cm,∴BC=BD+CD=12cm.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23、(1)﹣5x2+12x﹣15;(2)﹣2a1b1【分析】(1)直接利用乘法公式计算进而合并同类项得出答案;(2)直接利用积的乘方运算法则以及合并同类项法则进而计算得出答案.【详解】解:(1)原式=x2﹣9﹣6(x2﹣2x+1)=x2﹣9﹣6x2+12x﹣6=﹣5x2+12x﹣15;(2)原式=a1b1+a1b1﹣4a1b1=﹣2a1b1.【点睛】本题考查了平方差公式和完全平方公式,积的运算法则,解决本题的关键是熟练掌握乘法公式。24、(1)15秒;(2)5秒;(3)20秒【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【详解】(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N运动的时间为20秒.【点睛】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质、等边三角形的性质.25、(1)详见解析;(2)详见解析.【分析】(1)根据平行线性质求出∠A=∠B,根据SAS推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论