版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京市秦淮区四校联考数学八年级第一学期期末联考试题联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形 B.八边形 C.正六边形 D.正八边形2.已知以下三个数,不能组成直角三角形的是()A.9、12、15 B.、3、2 C.0.3、0.4、0.5; D.3.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°4.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E,连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为().A.52.5° B.60° C.67.5° D.75°5.关于x的不等式有解,则a的取值范围是()A.a<3 B.a≤3 C.a≥3 D.a>36.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<7.下列运算正确的是()A. B. C. D.8.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种 B.4种 C.3种 D.2种9.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A. B. C. D.10.如图,在等边三角形中,、分别为、上的点,且,、相交于点,,垂足为.则的值是().A.2 B. C. D.二、填空题(每小题3分,共24分)11.已知一次函数y=kx+b(k≠0)的图象经过点(0,2),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式:_____.12.分解因式:x3y﹣4xy=_____.13.计算10ab3÷5ab的结果是_____.14.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.15.已知:如图,在平面直角坐标系xOy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.16.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.17.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是________.18.等腰三角形一腰上的高与另一腰的夹角为,则其顶角为________.三、解答题(共66分)19.(10分)综合与探究[问题]如图1,在中,,过点作直线平行于,点在直线上移动,角的一边DE始终经过点,另一边与交于点,研究和的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点移动到使点与点重合时,很容易就可以得到请写出证明过程;[数学思考](2)如图3,若点是上的任意一点(不含端点),受(1)的启发,另一个学习小组过点,交于点,就可以证明,请完成证明过程;[拓展引申](3)若点是延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.20.(6分)如图,AB∥DC,AB=DC,AC与BD相交于点O.求证:AO=CO.21.(6分)(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)22.(8分)解不等式,并利用数轴确定该不等式组的解.23.(8分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:AE=DE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.24.(8分)解方程:(1)(2).25.(10分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.26.(10分)先仔细阅读材料,再尝试解决问题:我们在求代数式的最大或最小值时,通过利用公式对式子作如下变形:,因为,所以,因此有最小值2,所以,当时,,的最小值为2.同理,可以求出的最大值为7.通过上面阅读,解决下列问题:(1)填空:代数式的最小值为______________;代数式的最大值为______________;(2)求代数式的最大或最小值,并写出对应的的取值;(3)求代数式的最大或最小值,并写出对应的、的值.
参考答案一、选择题(每小题3分,共30分)1、D【解析】设出外角的度数,利用外角与相邻内角和为120°求得外角度数,360°÷这个外角度数的结果就是所求的多边形的边数.【详解】解:设正多边形的每个外角为x度,则每个内角为3x度,∴x+3x=120,解得x=1.∴多边形的边数为360°÷1°=2.故选D.【点睛】本题考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为120°;正多边形的边数等于360÷正多边形的一个外角度数,解题关键是熟练掌握多边形内角与外角之间的关系.2、D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】A、92+122=152,能构成直角三角形,故不符合题意;B、()2+32=(2)2,能构成直角三角形,故不符合题意;C、0.32+0.42=0.52,能构成直角三角形,故不符合题意;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故符合题意;故选D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故选A.
【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.4、C【分析】根据AB=AC,利用三角形内角和定理求出∠ABC、∠ACB的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数.【详解】解:∵AB=AC,
∴∠ABC=∠ACB,
∵∠A=30°,
∴∠ABC=∠ACB=(180°-30°)=75°,
∵以B为圆心,BC长为半径画弧,
∴BE=BD=BC,
∴∠BDC=∠ACB=75°,
∴∠CBD=180°-75°-75°=30°,
∴∠DBE=75°-30°=45°,
∴∠BED=∠BDE=(180°-45°)=67.5°.
故选:C.【点睛】本题考查了学生对等腰三角形的性质和三角形内角和定理等知识点的理解和掌握,此题的突破点是利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求得答案.5、C【分析】解不等式6-2x≤0,再根据不等式组有解求出a的取值范围即可.【详解】解不等式6-2x≤0,得:x≥1,∵不等式组有解,∴a≥1.故选:C.【点睛】本题主要考查根据不等式组的解判断未知参数的范围,熟练掌握不等式组的解法是解题关键.6、B【解析】二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7、B【分析】根据整式的混合运算法则即可求解.【详解】A.,故错误;B.,正确;C.,故错误;D.,故错误;故选B.【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.8、C【解析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.9、C【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】解:∵x﹣1≥0,∴x≥1.不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x≥1即x﹣1≥0在数轴上表示正确的是C.故选C.10、A【分析】因为AG⊥CD,△AGF为直角三角形,根据三角函数证明∠GAF=30°或∠AFD=60°即可,需要证明△ADF∽△ABE,通过证明△ABE≌△CAD可以得出.【详解】∵三角形ABC是等边三角形,∴AB=CA,∠ABE=∠CAD=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS).∴∠AEB=∠CDA,又∠EAD为公共角,∴△ADF∽△ABE.∴∠AFD=∠B=60°.∵AG垂直CD,即∠AGF=90°,∴∠GAF=30°,∴AF=2FG,即.故选:A.【点睛】此题主要考查等边三角形的性质、三角形全等的判定与性质及有30°角的直角三角形的性质等知识;难度较大,有利于培养同学们钻研和探索问题的精神,证明线段是2倍关系的问题往往要用到有30°角的直角三角形的性质求解,要熟练掌握.二、填空题(每小题3分,共24分)11、y=x+1【解析】根据题意可知k>0,这时可任设一个满足条件的k,则得到含x、y、b三个未知数的函数式,将(0,1)代入函数式,求得b,那么符合条件的函数式也就求出.【详解】解:∵y随x的增大而增大∴k>0∴可选取1,那么一次函数的解析式可表示为:y=x+b把点(0,1)代入得:b=1∴要求的函数解析式为:y=x+1.故答案为y=x+1【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,需注意应先确定x的系数,然后把适合的点代入求得常数项.12、xy(x+2)(x-2)【解析】原式=.故答案为.13、1b1.【解析】10ab3÷5ab=10÷5·(a÷a)·(b3÷b)=1b1,故答案为1b1.14、B点【解析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.【详解】解:当以点B为原点时,如图,
A(-1,-1),C(1,-1),
则点A和点C关于y轴对称,符合条件.
故答案为:B点.【点睛】本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.15、【分析】根据y=x+3求出点A、B的坐标,得到OA、OB的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,代入求值即可.【详解】由=x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴.解得.∴直线A′B′的解析式是.故答案为:.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.16、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.17、m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.18、135°或45°【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,∠ABM=45°,又∵BM是AC边上的高,∴∠AMB=90°,∴∠A=90°-45°=45°,②如图2,当等腰三角形是钝角三角形时,根据题意,∠DEN=45°,∵EN是DF边上的高∴∠N=90°,∴∠EDN=90°-45°=45°,∴∠EDF=180°-45°=135°故顶角为:135°或45°.【点睛】本题考查了等腰三角形的分类讨论问题,解题的关键是能够画出图形,根据数形结合的思想求出答案.三、解答题(共66分)19、[探究发现](1)见解析;[数学思考](2)见解析;[拓展引申](3)补充完整图形见解析;结论仍然成立.【分析】(1)根据等腰三角形性质和平行线性质可证;(2)在和中,证,得,可得;(3)根据题意画图,与(2)同理可得.【详解】[探究发现],,,且.即[数学思考].;在和中,.[拓展引申]如图,作,与(2)同理,可证,得.所以结论仍然成立.【点睛】考核知识点:等腰三角形判定和性质.运用全等三角形判定和性质解决问题是关键.20、证明见解析.【解析】试题分析:由AB∥CD,可得∠A=∠C,∠B=∠D,结合AB=CD即可由“ASA”证得△AOB≌△COD,由此可得OA=OC.试题解析:∵AB∥CD,∴∠A=∠C,∠B=∠D,又∵AB=CD,∴△AOB≌△COD,∴OA=OC.21、见解析【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)作点B关于x轴的对称点B',然后连接AB',与x轴的交点即为点P.【详解】(1)如图所示:(2)如图所示:.22、,在数轴上的表示见解析.【分析】先分别求出两个不等式的解,再利用数轴确定它们解的公共部分,即可得出不等式组的解集.【详解】不等式①,移项合并同类项、系数化为1得不等式②,去分母得去括号得移项合并同类项、系数化为1得将不等式①、②的解在数轴上表示如下:
故原不等式组的解集为.【点睛】本题考查了不等式组的解法,熟记不等式组的解法是解题关键.23、(1)见解析;(2)65°【分析】(1)根据BE平分∠ABC,可以得到∠ABE=∠DBE,然后根据题目中的条件即可证明△ABE和△DBE全等,从而可以得到结论成立;(2)根据三角形内角和求出∠ABC=30°,根据角平分线的定义求出∠CBE=15°,,然后根据外角的性质可以得到∠AEB的度数.【详解】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),∴AE=DE;(2)∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE,∴∠CBE=15°,∴∠AEB=∠C+∠CBE=50°+15°=65°.【点睛】本题考查全等三角形的判定与性质、角平分线的定义,以及三角形外角的性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.24、(1)x=2;(2)x=2是增根,分式方程无解.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《传感器与检测技术》练习题集
- 【初中物理】光的折射单元测试(培优卷)2024-2025学年苏科版物理八年级上册
- 2023年标准员之基础知识练习题(二)及答案
- 唐山-PEP-2024年11版小学三年级英语第1单元真题
- 2024年07版小学5年级上册英语第二单元期末试卷
- 收纳箱生产企业的账务处理-记账实操
- 中建信息化管理手册
- 强化研究-团结协作-共创佳绩
- 经济数学 课件 ch01 函数、极限及其应用
- 2024年高考语文二轮复习:语言的表达效果类新题型(练习)(解析版)
- 医疗肺结节科普宣教课件
- 2018风险管理指南中文版ISO31000
- 心电图操作技能培训
- 2024下半年江苏苏州城市学院招聘管理岗位工作人员27人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 学校饮用水自查表
- SYT 6739-2021 石油钻井参数监测仪技术条件-PDF解密
- 2014年4月自考00804金融法二试题及答案含解析
- 跨文化沟通心理学智慧树知到期末考试答案2024年
- 妇产科临床路径分析:优化医疗流程
- 2023四年级学生劳动素养考试试题
- 《航空法规全》课件
评论
0/150
提交评论