2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题含解析_第1页
2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题含解析_第2页
2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题含解析_第3页
2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题含解析_第4页
2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省酒泉市名校数学八年级第一学期期末学业质量监测试题测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在RtΔABC中,∠A=90°,∠ABC的平分线交AC于点D,AD=3,BC=10,则ΔBDC的面积是()

A.15 B.12 C.30 D.102.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A.每天比原计划多生产5个,结果延期10天完成B.每天比原计划多生产5个,结果提前10天完成C.每天比原计划少生产5个,结果延期10天完成D.每天比原计划少生产5个,结果提前10天完成3.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE4.若,则的值为()A. B. C. D.5.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是()A.61 B.16 C.52 D.256.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为D.5月到6月女生平均成绩比4月到5月的平均成绩增长快7.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm或9.如图,在△ABC中,∠B=90º,AC=10,AD为此三角形的一条角平分线,若BD=3,则三角形ADC的面积为()A.3 B.10 C.12 D.1510.如图,已知的六个元素,其中、、表示三角形三边的长,则下面甲、乙、丙、丁四个三角形中与不一定相似的图形是()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.如图,两个三角形全等,则∠α的度数是____12.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.13.当代数式的值不大于时,的取值范围是_______________________.14.如果,那么_______________________.15.若分式的值为0,则x的值为_____16.如图,是的中线,是的中线,若,则_________.17.如图,是的角平分线,于,若,,的面积等于,则_______.18.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.三、解答题(共66分)19.(10分)已知如图,长方体的长,宽,高,点在上,且,一只蚂蚁如果沿沿着长方体的表面从点爬到点,需要爬行的最短距离是多少?20.(6分)若一个三角形的三边长、、满足,你能根据已知条件判断这个三角形的形状吗?21.(6分)已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.22.(8分)进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?23.(8分)如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,若S△ABD=12,求DF的长.24.(8分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.25.(10分)解不等式组:,并把它的解集在数轴上表示出来.26.(10分)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.哪个队的施工速度快?

参考答案一、选择题(每小题3分,共30分)1、A【分析】作垂直辅助线构造新三角形,继而利用AAS定理求证△ABD与△EBD全等,最后结合全等性质以及三角形面积公式求解本题.【详解】作DE⊥BC,如下图所示:

∵BD是∠ABC的角平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD=BD,∴,∴DE=DA=1.在△BDC中,.故选:A.【点睛】本题考查全等三角形的判定和性质,该题辅助线的做法较为容易,有角度相等以及公共边的提示,图形构造完成后思路便会清晰,后续只需保证计算准确即可.2、B【解析】试题解析:实际每天生产零件x个,那么表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,表示原计划用的时间-实际用的时间=10天,说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.3、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.4、A【详解】∵,∴;故选A.5、B【分析】先设这个两位数的十位数字和个位数字分别为x,7-x,根据“如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数”列出方程,求出这个两位数.【详解】设这个两位数的十位数字为x,则个位数字为7−x,由题意列方程得,10x+7−x+45=10(7−x)+x,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.6、C【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;

B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;

C.4月到5月,女生平均成绩的增长率为,此选项错误,符合题意;

D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;

故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.7、B【解析】试题解析:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB-AD=AC-AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.8、D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为,

(1)若4是直角边,则第三边是斜边,由勾股定理得:

,∴;

(2)若4是斜边,则第三边为直角边,由勾股定理得:

,∴;

综上:第三边的长为5或.

故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.9、D【分析】过D作DE⊥AC于E,根据角平分线性质得出BD=DE=3,再利用三角形的面积公式计算即可.【详解】解:过D作DE⊥AC于E.

∵AD是∠BAC的角平分线,∠B=90°(DB⊥AB),DE⊥AC,

∴BD=DE,

∵BD=3,

∴DE=3,

∴S△ADC=•AC•DE=×10×3=15

故选D.【点睛】本题考查了角平分线的性质,注意:角平分线上的点到角两边的距离相等.10、A【分析】根据相似三角形的判定方法对逐一进行判断.【详解】解

:A.满足两组边成比例夹角不一定相等,与不一定相似,故选项正确;

B.满足两组边成比例且夹角相等,与相似的图形相似,故选项错误;

C.满足两组角分别相等,与相似的图形相似,故选项错误;

D.满足两组角分别相等,与相似的图形相似,故选项错误

故选A.【点睛】本题考查了相似三角形的判定方法,关键是灵活运用这些判定解决问题.二、填空题(每小题3分,共24分)11、50°【解析】根据全等三角形的对应角相等解答.【详解】∵两个三角形全等,a与c的夹角是50°,

∴∠α=50°,

故答案是:50°.【点睛】考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.12、【分析】设AO=x,则BO=DO=6﹣x,在直角△ABO中利用勾股定理即可列方程求得x的值,则可求出OD的长.【详解】解:∵△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,∴∠C'BD=∠CBD,∵长方形ABCD中,AD∥BC,∴∠ODB=∠CBD,∴∠ODB=∠C'BD,∴BO=DO,设AO=x,则BO=DO=6﹣x,在直角△ABO中,AB2+AO2=BO2,即42+x2=(6﹣x)2,解得:x=,则AO=,∴OD=6﹣=,故答案为:.【点睛】本题考查直角三角形轴对称变换及勾股定理和方程思想方法的综合应用,熟练掌握直角三角形轴对称变换的性质及方程思想方法的应用是解题关键.13、【分析】根据题意,列出一元一次不等式,然后解不等式即可得出结论.【详解】解:由题意可得≤10≤20≤19解得故答案为:.【点睛】此题考查的是解一元一次不等式,掌握不等式的解法是解决此题的关键.14、【分析】根据二次根式的有意义的条件可求出x,进而可得y的值,然后把x、y的值代入所求式子计算即可.【详解】解:∵x-3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.15、-1【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】由题意,得x+1=0且x≠0,解得x=-1,故答案为:-1.【点睛】此题主要考查分式的值,解题的关键是熟知分子为零且分母不为零时分式的值为零.16、18cm2【分析】根据是的中线可先求到的值,再根据是的中线即可求到的值.【详解】解:是的中线,是的中线故答案为:.【点睛】本题考查的是中线的相关知识,中线将三角形的面积分为相等的两部分.17、2【分析】延长AC,过D点作DF⊥AF于F,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D点作DF⊥AC于F∵是的角平分线,DE⊥AB,∴DE=DF∵=30∴∵,,DE=DF∴得到DE=2故答案为:2.【点睛】此题主要考查了角平分线的性质,熟记概念是解题的关键.18、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【点睛】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.三、解答题(共66分)19、需要爬行的最短距离是cm.【分析】将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM;或将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM;或将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM;再分别在Rt△ADM、Rt△ABM、Rt△ACM中,利用勾股定理求得AM的长,比较大小即可求得需要爬行的最短路程.【详解】解:将长方体沿CH、HE、BE剪开,然后翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,由题意可得:MD=MC+CD=5+10=15cm,AD=15cm,在Rt△ADM中,根据勾股定理得:AM=cm;将长方体沿CH、GD、GH剪开,然后翻折,使面ABCD和面DCHG在同一个平面内,连接AM,如图2,由题意得:BM=BC+MC=5+15=20cm,AB=10cm,在Rt△ABM中,根据勾股定理得:AM=cm,将长方体沿AB、AF、EF剪开,然后翻折,使面ABEF和面BEHC在同一个平面内,连接AM,如图3,由题意得:AC=AB+CB=10+15=25cm,MC=5cm,在Rt△ACM中,根据勾股定理得:AM=cm,∵,,,∴,则需要爬行的最短距离是cm.【点睛】此题考查了最短路径问题,利用了转化的思想,解题的关键是将立体图形展开为平面图形,利用勾股定理求解.20、等边三角形,见解析【分析】移项,将式子的右边化为0,结合完全平方公式,及平方的非负性解题即可.【详解】解:,,∴,,.∴这个三角形是等边三角形.【点睛】本题考查因式分解的应用,其中涉及完全平方公式、平方的非负性、等边三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.21、(1)y=2x-4;(2)-6<y<1.【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;

(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),

把x=1,y=-2代入y=k(x-2),

得k(1-2)=-2,解得:k=2,

所以解析式为:y=2(x-2)=2x-4;

(2)把x=-1,x=2分别代入y=2x-4,

可得:y=-6,y=1,∵y=2x-4中y随x的增大而增大,

∴当-1<x<2时,y的范围为-6<y<1.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.22、(1)该商场购进第一批空调的单价2500元;(2)每台空调的标价至少为4000元.【分析】(1)设购进第一批空调的单价为元,则第二批空调的单价为元,用总价除以单价分别得到两批购买的数量,再根据第二批比第一批多15台得到方程求解即可;(2)设标价为元,用表示出总的销售额,然后根据利润率不低于列出不等式求解.【详解】解:(1)设购进第一批空调的单价为元,则第二批空调的单价为元,由题意得,解得,经检验,是原方程的解.答:该商场购进第一批空调的单价2500元.(2)设每台空调的标价为元,第二批空调的单价为元,第一批空调的数量为台,第二批空调的数量为台,由题意得,解得答:每台空调的标价至少为4000元.【点睛】本题考查分式方程的应用和一元一次不等式的应用,根据总价除以单价等于数量得出方程是关键,分式方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论