版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省徽县数学八上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,,要说明,需添加的条件不能是()A. B. C. D.2.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+33.下列各式中,不论字母取何值时分式都有意义的是()A. B. C. D.4.多项式12ab3c-8a3b的公因式是()A.4ab2 B.-4abc C.-4ab2 D.4ab5.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形6.关于x的方程的解为正数,则k的取值范围是()A. B. C.且 D.且7.下列从左到右的运算是因式分解的是()A. B.C. D.8.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8 B.10 C.12 D.149.到三角形三边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点10.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形11.-9的立方根为()A.3 B.-3 C.3或-3 D.12.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于()
A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空题(每题4分,共24分)13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________14.若x,y都是实数,且,则x+3y=_____.15.若关于x的分式方程+2无解,则m的值为________.16.已知实数,0.16,,,,,其中为无理数的是___.17.如图,CD是的角平分线,于E,,的面积是9,则的面积是_____.18.如图,长方形台球桌面上有两个球、.,球连续撞击台球桌边,反射后,撞到球.已知点、是球在,边的撞击点,,,且点到边的距离为3,则的长为__________,四边形的周长为________三、解答题(共78分)19.(8分)如图,已知点在线段上,分别以,为边长在上方作正方形,,点为中点,连接,,,设,.(1)若,请判断的形状,并说明理由;(2)请用含,的式子表示的面积;(3)若的面积为6,,求的长.20.(8分)如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:(1)请用两种不同的方法表示正方形的面积,并写成一个等式;(2)运用(1)中的等式,解决以下问题:①已知,,求的值;②已知,,求的值.21.(8分)如图,已知A(0,4)、B(﹣2,2)、C(3,0).(1)作△ABC关于x轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)求△A1B1C1的面积S.22.(10分)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.23.(10分)已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.24.(10分)(1)计算:;(2)先化简,然后从的范围内选取一个合适的整数作为的值带入求值.25.(12分)计算(1)(2)(3)解方程组:26.如图,在平面直角坐标系中,点,点.(1)若点关于轴、轴的对称点分别是点、,请分别描出、并写出点、的坐标;(2)在轴上求作一点,使最小(不写作法,保留作图痕迹)
参考答案一、选择题(每题4分,共48分)1、D【分析】根据全等三角形的判定定理判断即可.【详解】A、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;B、在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;C、∵∴在△ABC和△DCB中∴△ABC≌△DCB,故本选项正确;D、根据两边和其中一边的对角不能判断两三角形全等;故本选项错误;故选:D.【点睛】本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据等腰三角形的性质及全等三角形的判定定理进行证明是解此题的关键.2、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.3、D【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【详解】解:选项A:;选项B:;选项C:;选项D:∵2x2+1>1,∴不论字母取何值都有意义.故选:D.【点睛】本题考查的知识点是分式有意义的条件,通过举反例也可排除不正确的选项.4、D【分析】利用公因式的概念,进而提出即可.【详解】多项式12ab3c-8a3b的公因式是4ab,故选:D.【点睛】此题考查了公因式,熟练掌握提取公因式的方法是解本题的关键.5、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.6、C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:,解得:,根据题意得:,且,解得:,且.故选C.【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.7、C【分析】按照因式分解的概念:把一个多项式分解成几个整式乘积的形式,逐一进行判断即可.【详解】A选项等号左右两边不相等,故错误;B选项等号右边不是乘积的形式,故错误;C选项等号右边是乘积的形式,故正确;D选项等号右边不是乘积的形式,故错误;故选:C.【点睛】本题主要考查因式分解,掌握因式分解的概念是解题的关键.8、B【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选:B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点及周长的定义.9、D【分析】直接利用三角形的内心性质进行判断.【详解】到三角形三边的距离都相等的点是这个三角形的内心,即三个内角平分线的交点.
故选:D.【点睛】本题考查了角平分线的性质:角平分线的性质:角的平分线上的点到角的两边的距离相等.10、B【解析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.11、D【分析】根据立方根的定义进行计算即可得解.【详解】-9的立方根是.故选:D.【点睛】本题考查了立方根的定义,是基础题,熟记概念是解题的关键.12、C【分析】由于三角形的三条角平分线的交点为三角形的内心,则点O为△ABC的内心,又知点O到三边的距离相等,即三个三角形的高相等,利用三角形的面积公式知,三个三角形的面积之比即为对应底边之比.【详解】解:由题意知,点O为△ABC的内心,则点O到三边的距离相等,设距离为r,则S△ABO=AB·r,S△BCO=BC·r,S△CAO=AC·r,∴S△ABO∶S△BCO∶S△CAO=AB·r:BC·r:AC·r=AB:BC:AC=20:30:40=2:3:4,故选:C.【点睛】本题考查三角形的角平分线的性质、三角形的内心、三角形的面积公式,关键是熟知三角形的三条角平分线相交于一点,这一点是该三角形的内心.二、填空题(每题4分,共24分)13、135°【分析】易证△ABC≌△BDE,得∠1=∠DBE,进而得∠1+∠3=90°,即可求解.【详解】∵AC=BE,BC=DE,∠ACB=∠BED=90°,∴△ABC≌△BDE(SAS),∴∠1=∠DBE,∵∠DBE+∠3=90°,∴∠1+∠3=90°,∵∠2=×90°=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案是:135°.【点睛】本题主要考查三角形全等的判定和性质以及直角三角形的性质,掌握SAS判定三角形全等,是解题的关键.14、1【分析】根据被开方数是非负数,可得答案.【详解】由题意,得x−3≥0且3−x≥0,解得x=3,y=8,x+3y=3+3×8=1,故答案为:1.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.15、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.16、【分析】根据无理数概念结合有理数概念逐一进行分析即可.【详解】是有理数,0.16是有理数,是无理数,是无理数,=5是有理数,是无理数,所有无理数是,,,故答案为,,.【点睛】本题主要考查了无理数定义.初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,如,等;③虽有规律但是无限不循环的数,如0.1010010001…,等.注意解答此类问题时,常常要结合有理数概念来求解.17、3【分析】延长AE与BC相交点H,先用ASA证明AEC≌HEC,则SHEC=SAEC,求出BH,CH的长度,利用ABC的面积为9,求出ACH的面积为6,即可得到的面积.【详解】解:延长AE与BC相交点H,如图所示∵CD平分∠ACB∴∠ACD=∠BCD∵AE⊥CD∴∠AEC=∠HEC在AEC和HEC中∴AEC≌HEC(ASA)∴AC=CH∴SHEC=SAEC∵BC=6,AC=4∴BH=2,CH=4过A作AK⊥BC,则∵,BC=6,∴AK=3,∴SHCA=,∴SHEC=SAEC=3;故答案为:3.【点睛】本题考查了全等三角形的判定和性质,三角形的角平分线定义,以及三角形面积的计算,熟练掌握全等三角形的判定和性质,正确求出AK的长度是解题的关键.18、61【分析】作PE⊥AB于E,则PE=3,延长PQ、MN交于点Q,证出Q与Q'关于BC对称,MP=2PE=6,由轴对称的性质得出NQ'=NQ,证出∠Q'=30°=∠MPQ,得出MQ'=MP=6,即可得出答案.【详解】解:作PE⊥AB于E,则PE=3,延长PQ、MN交于点Q,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AB⊥BC,∵PQ//AB,∴PQ⊥BC,∠EMP=∠MPQ=30°,∠Q'=∠BMN,∴Q与Q'关于BC对称,MP=2PE=6,∴NQ'=NQ,由题意得:∠BMN=∠EMP=30°,∴∠Q'=30°=∠MPQ,∴MQ'=MP=6,∴四边形PMNQ的周长=MP+PQ+NQ+MN=MP+PQ+NQ'+MN=MP+PQ+MQ'=6+4+6=1;故答案为:6,1.【点睛】本题考查了矩形的性质、轴对称的性质、平行线的性质、等腰三角形的判定等知识;熟练掌握矩形的性质和轴对称的性质是解题的关键.三、解答题(共78分)19、(1)等腰三角形,理由见解析;(2);(3)4【分析】(1)利用题目所给条件,通过SAS证明≌,可得出结果;(2)根据图像可知,,分别求出各部分面积可求出最终结果;(3)若的面积为6,则,因式分解后可解出最终结果.【详解】(1)为等腰三角形.∵点为的中点,∴,∵,,∴,,∵,∴≌,∴,∴为等腰三角形.(2)∵,,,∴.(3)∵,∴,∴,∵,∴,∴,即.【点睛】本题主要考查三角形综合问题,涉及证明三角形全等,三角形面积的求解,需要熟练掌握全等三角形以及多边形中三角形面积求解的方法,利用数形结合的思想是解题的关键.20、(1)正方形的面积可表示为:或;等式:;(2)①;②103.【分析】(1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;(2)①根据(1)中的等式进行直接求解即可;②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.【详解】(1)正方形ABCD的面积可表示为:或等式:(2)①∵,,由(1)得:∴∴②令a=x-y,则a+z=11,az=9∴原式可变形为:【点睛】本题考查的是完全平方公式的几何意义,能根据(1)中求出的等式对完全平方公式进行变形是关键.21、(1)B1(﹣2,﹣2)(2)1【解析】试题分析:(1)根据关于x轴对称点的坐标特点,分别找出A、B、C三点的对称点坐标,然后描出对称点,再连接可得△A1B1C1,根据图形可直接写出点B1的坐标即可;(2)利用矩形的面积减去周围多余小三角形的面积即可.试题解析:(1)如图△A1B1C1即为所求作,B1(﹣2,﹣2);(2)△A1B1C1的面积:S=4×5﹣(2×2+2×5+3×4)=1.22、原式=【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【详解】解:原式==当x=1时,原式==1.考点:分式的化简求值.23、见解析.【分析】过D作DE⊥AB于E,根据角平分线的性质得出DE=DC,根据AAS证△DEA≌△DCA,推出AE=AC,利用等腰三角形的性质证明即可.【详解】证明:过D作DE⊥AB于E,∵AD平分∠BAC,CD⊥AC,∴DE=DC,在△DEA和△DCA中,,∴△DEA≌△DCA,∴AE=AC,∵2AC=AB∴AE=AC=BE∵AE⊥DE∴AD=BD【点睛】此题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA≌△DCA,主要培养了学生分析问题和解决问题的能力,题目比较好,难度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省龙东地区2024-2025学年高一上学期阶段测试(二)(期中) 语文 含解析
- 2024室内智能物流机器人
- 常德2024年05版小学六年级下册英语第五单元综合卷
- 郑州-PEP-2024年小学六年级上册英语第二单元寒假试卷
- 珠宝生产企业的账务处理分录-记账实操
- 强化企业安全生产-责任落实十项
- 概括内容要点理解词句含义-2025年高考语文一轮复习知识清单(解析版)
- 1.1 反比例函数 同步练习
- 2024年初级经济师之初级金融专业模拟考试试卷B卷(含答案)
- 平面图形的镶嵌评课稿(10篇)
- 同底数幂的乘法练习
- 医院检验科实验室生物安全程序文件SOP
- 岗位竞聘课件(完美版)
- 中国新闻事业发展史 第十四讲 新闻事业的曲折发展
- JJG 270-2008血压计和血压表
- 中职数学《平面的基本性质》课件
- 尘肺病的知识讲座
- 大学生生涯规划与职业发展智慧树知到期末考试答案2024年
- 消毒供应室护理查房
- 年产十二万吨天然橙汁食品工厂设计样本
- 消防安全与建筑设计的结合
评论
0/150
提交评论