版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省句容市崇明片数学八年级第一学期期末学业质量监测试题监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.1922.9的平方根是()A. B. C. D.3.方程组的解是()A. B. C. D.4.已知,如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5cm,BD=3cm,则ED的长为()A.2cm B.3cm C.5cm D.8cm5.已知,则的值为A.5 B.6 C.7 D.86.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. B. C. D.7.用科学记数法表示0.00000085正确的是()A.8.5×107 B.8.5×10-8 C.8.5×10-7 D.0.85×10-88.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.9.下列各式从左到右的变形是因式分解的是()A. B.C. D.10.下列图形是轴对称图形的是()A. B. C. D.11.在平面直角坐标系xOy中,A(1,3),B(5,1),点M在x轴上,当MA+MB取得最小值时,点M的坐标为()A.(5,0) B.(4,0) C.(1,0) D.(0,4)12.式子有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>2二、填空题(每题4分,共24分)13.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.14.己知a2-3a+1=0,则数式(a+1)(a-4)的值为______。15.已知实数在数轴上的位置如图所示,则化简___________.16.已知:如图,点在同一直线上,,,则______.17.如图,,则的度数为_________.18.如图,和都是等腰直角三角形,,,则___________度.三、解答题(共78分)19.(8分)已知:在平面直角坐标系中,点为坐标原点,的顶点的坐标为,顶点在轴上(点在点的右侧),点在上,连接,且.(1)如图1,求点的纵坐标;(2)如图2,点在轴上(点在点的左侧),点在上,连接交于点;若,求证:(3)如图3,在(2)的条件下,是的角平分线,点与点关于轴对称,过点作分别交于点,若,求点的坐标.20.(8分)如图,直线y=﹣2x+8分别交x轴,y轴于点A,B,直线yx+3交y轴于点C,两直线相交于点D.(1)求点D的坐标;(2)如图2,过点A作AE∥y轴交直线yx+3于点E,连接AC,BE.求证:四边形ACBE是菱形;(3)如图3,在(2)的条件下,点F在线段BC上,点G在线段AB上,连接CG,FG,当CG=FG,且∠CGF=∠ABC时,求点G的坐标.21.(8分)列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少,小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树,他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟(1)由此估算这段路长约____千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米,小宇计从路的起点开始,每a米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了一种方案,将原计划的a扩大一倍,则路的两侧共计减少400棵树,请你求出a的值22.(10分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC24.(10分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.25.(12分)运用乘法公式计算(1)(2)26.甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:学生数与代数空间与图形统计与概率综合与实践平均成绩方差甲8793918589______乙89969180____________(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按,计算哪个学生数学综合素质测试成绩更好?请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.2、C【分析】根据平方根的定义进行求解即可.【详解】解:9的平方根是.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.3、C【分析】直接利用代入法解方程组即可得解【详解】解:,由①得:③,将③代入②得:,解得:,将代入③得:故方程组的解为:,故选择:C.【点睛】本题主要考查二元一次方程组的解及解二元一次方程,解二元一次方程有两种方法:代入法和加减法,根据方程组的特点灵活选择.4、A【解析】根据ASA得到△ACD≌△AED,再利用全等三角形的性质得到DE=CD即可求出.【详解】解:∵∠CAD=∠EAD,AD=AD,∠ADC=∠ADE,∴△ACD≌△AED,∴DE=CD=BC-BD=5-3=2,故选A.【点睛】本题考查了全等三角形的判定与性质,主要考查学生运用定理和性质进行推理的能力,题目比较好,难度适中.5、C【分析】根据完全平方公式的变形即可求解.【详解】∵∴即∴=7,故选C.【点睛】此题主要考查完全平方公式的运用,解题的关键是熟知完全平方公式的变形及运用.6、C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.7、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.00000085用科学记数法表示为8.5×10-1.
故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、A【分析】甲型机器人每台万元,根据万元购买甲型机器人和用万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台万元,根据题意,可得故选.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.9、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、,故本选项错误;
B、,故本选项错误;
C、是整式的乘法,不是分解因式,故本选项错误;
D、符合因式分解的意义,是因式分解,故本选项正确;故选:D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10、A【解析】试题分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.考点:轴对称图形.11、B【分析】根据对称性,作点B关于x轴的对称点B′,连接AB′与x轴交于点M,根据两点之间线段最短,后求出的解析式即可得结论.【详解】解:如图所示:作点B关于x轴的对称点B′,连接AB′交x轴于点M,此时MA+MB=MA+MB′=AB′,根据两点之间线段最短,因为:B(5,1),所以:设直线为把代入函数解析式:解得:所以一次函数为:,所以点M的坐标为(4,0)故选:B.【点睛】本题考查了轴对称-最短路线问题,解决本题的关键是掌握对称性质.12、C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.二、填空题(每题4分,共24分)13、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.14、-5【分析】先化简数式(a+1)(a-4),再用整体代入法求解即可.【详解】∵a2-3a+1=0,∴a2-3a=-1,(a+1)(a-4)=a2-3a-4=-1-4=-5【点睛】熟练掌握整式化简及整体代入法是解决本题的关键.15、1【解析】根据数轴得到,,根据绝对值和二次根式的性质化简即可.【详解】由数轴可知,,
则,
∴,
故答案为:1.【点睛】本题考查了绝对值和二次根式的化简及绝对值的性质,关键是根据数轴得出.16、【分析】先证明△ABC≌△DEF,得到∠A=∠D,由即可求得∠F的度数.【详解】解:∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
在△ABC和△DEF中,
∴△ABC≌△DEF(SSS),
∴∠A=∠D∵,∴∠F=180°-62°-40°=78°,故答案为78°.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题.17、65゜.【分析】首先证明△AED≌△ACB得AB=AD,再根据等腰三角形的性质求解即可.【详解】在△AED和△ACB中,∵,∴△AED≌△ACB,∴AB=AD,∵∠BAD=50゜,∴∠B=.故答案为:65゜.【点睛】此题考查了全等三角形的判定与性质以及等腰三角形的性质,熟练掌握这些性质是解题的关键.18、132【分析】先证明△BDC≌△AEC,进而得到角的关系,再由∠EBD的度数进行转化,最后利用三角形的内角和即可得到答案.【详解】解:∵,∴,在和中,,∴,∴,∵,∴,∴,∴.故答案为132【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理等知识,解题的关键是准确寻找全等三角形解决问题.三、解答题(共78分)19、(1)点的纵坐标为1;(1)证明见解析;(3)点的坐标为.【分析】(1)由得出,然后通过等量代换得出,则有,进而有,则点C的纵坐标可求;(1)通过推导出,然后求出,则利用含30°的直角三角形的性质即可证明结论;(3)连接,过点作交轴于点,先推出,然后通过垂直和角度之间的代换得出则有,然后进一步,再因为得出的值,则可求出,利用即可求出的值,则点E的坐标可求.【详解】(1)如图,过点作于点又∴点的纵坐标为1.(1)又(3)如图,连接,过点作交轴于点又∵∵点与点关于轴对称,点在轴上∵点在轴上,且在点的上方.∴点的坐标为.【点睛】本题主要考查等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质,掌握等腰三角形的性质,平行线的性质,含30°的直角三角形的性质,垂直平分线的性质是解题的关键,第(3)问有一定的难度,主要是在于辅助线的作法.20、(1)点D坐标(2,4);(2)证明见详解;(3)点G(,).【分析】(1)两个解析式组成方程组,可求交点D坐标;
(2)先求出点A,点B,点E,点C坐标,由两点距离公式可求BC=AE=AC=BE=5,可证四边形ACBE是菱形;
(3)由“AAS”可证△ACG≌△BGF,可得BG=AC=5,由两点距离公式可求点G坐标.【详解】解:(1)根据题意可得:,解得:,∴点D坐标(2,4)(2)∵直线y=﹣2x+8分别交x轴,y轴于点A,B,∴点B(0,8),点A(4,0).∵直线yx+3交y轴于点C,∴点C(0,3).∵AE∥y轴交直线yx+3于点E,∴点E(4,5)∵点B(0,8),点A(4,0),点C(0,3),点E(4,5),∴BC=5,AE=5,AC5,BE5,∴BC=AE=AC=BE,∴四边形ACBE是菱形;(3)∵BC=AC,∴∠ABC=∠CAB.∵∠CGF=∠ABC,∠AGF=∠ABC+∠BFG=∠AGC+∠CGF,∴∠AGC=∠BFG,且FG=CG,∠ABC=∠CAB,∴△ACG≌△BGF(AAS),∴BG=AC=5,设点G(a,﹣2a+8),∴(﹣2a+8﹣8)2+(a﹣0)2=52,∴a=±,∵点G在线段AB上,∴a,∴点G(,8﹣2)【点睛】本题是一次函数综合题,考查了一次函数的性质,菱形的判定和性质,全等三角形的判定和性质,两点距离公式等知识,利用两点距离公式求线段的长是本题的关键.21、(1)1;(2)7.5【分析】(1)利用路程=速度×时间可求出这条路的长度;(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,根据需种树的棵数=路的长度÷树间距结合现设计的每一侧都减少400棵树,即可得出关于a的分式方程,解之经检验后即可得出结论.【详解】(1)这段路长约60(千米).
故答案为:1.(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,
依题意,得:由愿意可得,解方程得,经检验,满足方程且符合题意.答:的值是.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.注意单位的统一.22、(1)黄瓜和茄子各30千克、10千克;(2)23元【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得,答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.23、见详解.【详解】由SAS可得△ABE≌△DCE,即可得出AB=CD.∵AE=DE,BE=CE,∠AEB=∠CED(对顶角相等),∴△ABE≌△DCE(SAS),∴AB=CD.24、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.
(2)根据加权平均数的公式可以计算出平均数;
(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设备安装工程委托施工合同
- 医药企业防尘网施工合同
- 医疗保健票据处理办法
- 餐饮业电梯施工安装工程合同
- 智能建筑网线铺设协议
- 科技期刊数字化出版技术指南
- 绿色建筑招投标法规体系精讲
- 城市交通监理管理规范
- 大型设备焊工劳动合同
- 物业维修技术员定向就业
- 小学《信息技术》考试试题及
- 出口退税培训课件
- 校外培训机构消防演练方案(精选10篇)
- 检伤分类课件
- 《新能源材料与器件》教学课件-04电化学能源材料与器件
- 河北省邢台市药品零售药店企业药房名单目录
- 辽宁省锦州市药品零售药店企业药房名单目录
- 钛合金相变及表征方法
- 湖北省十堰市各县区乡镇行政村村庄村名居民村民委员会明细
- 个人收入证明免费打印
- 部编人教版八年级上册语文期末复习课件(专题三 名著阅读)
评论
0/150
提交评论