版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北恩施白杨数学八年级第一学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.52.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°3.要使分式无意义,则的取值范围是()A. B. C. D.4.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,55.如图,中,,的垂直平分线交于点,垂足为点.若,则的长为()A. B. C. D.6.下列多项式中,不能用平方差公式分解的是()A. B.C. D.7.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.8.下列式子可以用平方差公式计算的是()A. B.C. D.9.下列命题中,是真命题的是()A.0的平方根是它本身B.1的算术平方根是﹣1C.是最简二次根式D.有一个角等于60°的三角形是等边三角形10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2 B. C.5 D.11.下列说法正确的是()A.是最简二次根式 B.的立方根不存在C.点在第四象限 D.是一组勾股数12.若关于的分式方程无解,则的值是()A.或 B. C. D.或二、填空题(每题4分,共24分)13.如图,边长为acm的正方形,将它的边长增加bcm,根据图形写一个等式_____.14.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.15.写一个函数图象交轴于点,且随的增大而增大的一次函数关系式_______.16.若等腰三角形的顶角为,则它腰上的高与底边的夹角是________度.17.面试时,某人的基本知识、表达能力、工作态度的得分分别是80分、70分、85分,若依次按30%、30%、40%的比例确定成绩,则这个人的面试成绩是____________.18.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.三、解答题(共78分)19.(8分)△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.20.(8分)如图,在平面直角坐标系内,点O为坐标原点,经过A(-2,6)的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为1.(1)求直线AD的解析式;(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y(y≠0),求y与m之间的函数关系式并直接写出相应的m的取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.21.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.22.(10分)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣3|+=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.23.(10分)计算:(1);(2)24.(10分)如图是小亮同学设计的一个轴对称图形的一部分.其中点都在直角坐标系网格的格点上,每个小正方形的边长都等于1.(1)请画出关于轴成轴对称图形的另一半,并写出,两点的对应点坐标.(2)记,两点的对应点分别为,,请直接写出封闭图形的面积.25.(12分)已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.26.化简与计算(1)将公式变形成已知与,求.(假定变形中所有分式其分母都不为0)(2)(3)计算:(4)计算:,并把结果按字母升幂排列
参考答案一、选择题(每题4分,共48分)1、D【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【详解】解:∵62+82=100=102,∴三边长分别为6cm、8cm、10cm的三角形是直角三角形,最大边是斜边为10cm.∴最大边上的中线长为5cm.故选D.【点睛】本题考查勾股定理的逆定理;直角三角形斜边上的中线.2、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∴∠1=∠2,∠3=∠4,
∵∠ACE=∠A+∠ABC,
即∠1+∠2=∠3+∠4+∠A,
∴2∠1=2∠3+∠A,
∵∠1=∠3+∠D,
∴∠D=∠A=×30°=15°.
故选A.
【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.3、A【分析】根据分式无意义,分母等于0列方程求解即可.【详解】∵分式无意义,∴x+1=0,解得x=-1.故选A.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4、C【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选C.【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.5、D【分析】由线段垂直平分线的性质解得,再由直角三角形中,30°角所对的直角边等于斜边的一半解题即可.【详解】是线段BC的垂直平分线,故选:D.【点睛】本题考查垂直平分线的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.6、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.7、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形与中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.8、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A、两个都是相同的项,不符合平方差公式的要求;
B、不存在相同的项,不符合平方差公式的要求;
C、两个都互为相反数的项,不符合平方差公式的要求;
D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.
故选:D.【点睛】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9、A【分析】根据平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定逐一分析即可【详解】解:A、0的平方根是它本身,本选项说法是真命题;B、1的算术平方根是1,本选项说法是假命题;C、不是最简二次根式,本选项说法是假命题;D、有一个角等于60°的等腰三角形是等边三角形,本选项说法是假命题;故选:A.【点睛】本题考查了平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定,熟练掌握相关知识是解题的关键10、B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.11、C【分析】根据最简二次根式的定义、立方根的性质、坐标和象限的关系、勾股定理即可判断结果.【详解】解:A、=,不是最简二次根式,故选项不符合;B、的立方根是,故选项不符合;C、点在第四象限,正确,故选项符合;D、,不是勾股数,故选项不符合;故选C.【点睛】本题考查了最简二次根式、立方根、坐标和象限、勾股数,解题的关键是正确理解对应概念,属于基础题.12、A【分析】分式方程去分母转化为整式方程,由分式方程无解,得到最简公分母为0,求出x的值,代入整式方程求出m的值即可.【详解】解:方程去分母得:-(x+m)+x(x+1)=(x+1)(x-1),由分式方程无解,得到,解得:x=1或x=-1,
把x=1代入整式方程得:m=6;
把x=-1代入整式方程得:m=1.
故选:A.【点睛】本题考查分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题(每题4分,共24分)13、.【解析】依据大正方形的面积的不同表示方法,即可得到等式.【详解】由题可得,大正方形的面积=a2+2ab+b2;大正方形的面积=(a+b)2;∴a2+2ab+b2=(a+b)2,故答案为a2+2ab+b2=(a+b)2【点睛】本题主要考查了完全平方公式的几何应用,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.14、1.【解析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【点睛】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.15、y=x-3(答案不唯一)【分析】设这个一次函数的解析式为:y=kx+b,然后将代入可得b=-3,再根据随的增大而增大可得,k>0,最后写出一个符合以上结论的一次函数即可.【详解】解:设这个一次函数的解析式为:y=kx+b将代入,解得b=-3,∵随的增大而增大∴k>0∴这个一次函数可以为y=x-3故答案为:y=x-3(答案不唯一)【点睛】此题考查的是根据一次函数的图象所经过的点和一次函数的增减性,写出符合条件的一次函数,掌握一次函数的图象及性质与各系数的关系是解决此题的关键.16、1【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.【详解】∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;∴高与底边的夹角为1°.故答案为1.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.17、79分【分析】根据加权平均数定义解答即可.【详解】这个人的面试成绩是80×30%+70×30%+85×40%=79(分),故答案为:79分.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.18、25【详解】根据三角形的外角的性质可得∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D,又因为BD,CD是∠ABC的平分线与∠ACE的平分线,所以∠ACE=2∠DCE,∠ABC=2∠DBC,所以∠D=∠DCE-∠DBC=(∠ACE-∠ABC)=∠A=25°.三、解答题(共78分)19、(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)1.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;
(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;
(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);
(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;
(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有1个.
故答案为:1.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.20、(1)y=2x+10;(2)y=m+3(-2<m<4);(3)存在,点F的坐标为(,0)或(-,0)或(-,0)【分析】(1)根据直线AB交x轴正半轴于点B,交y轴于点C,OB=OC,设出解析式为y=-x+n,把A的坐标代入求得n的值,从而求得B的坐标,再根据三角形的面积建立方程求出BD的值,求出OD的值,从而求出D点的坐标,直接根据待定系数法求出AD的解析式;(2)先根据B、A的坐标求出直线AB的解析式,将P点的横坐标代入直线AB的解析式,求出P的总坐标,将P点的总坐标代入直线AD的解析式就可以求出E的横坐标,根据线段的和差关系就可以求出结论;(3)要使△PEF为等腰直角三角形,分三种情况分别以点P、E、F为直角顶点,根据等腰直角三角形的性质求出(2)中m的值,就可以求出F点的坐标.【详解】(1)∵OB=OC,∴设直线AB的解析式为y=-x+n,∵直线AB经过A(-2,6),∴2+n=6,∴n=4,∴直线AB的解析式为y=-x+4,∴B(4,0),∴OB=4,∵△ABD的面积为1,A(-2,6),∴S△ABD=×BD×6=1,∴BD=9,∴OD=5,∴D(-5,0),设直线AD的解析式为y=ax+b,∴,解得.∴直线AD的解析式为y=2x+10;(2)∵点P在AB上,且横坐标为m,∴P(m,-m+4),∵PE∥x轴,∴E的纵坐标为-m+4,代入y=2x+10得,-m+4=2x+10,解得x=,∴E(,-m+4),∴PE的长y=m-=m+3;即y=m+3,(-2<m<4),(3)在x轴上存在点F,使△PEF为等腰直角三角形,①当∠FPE=90°时,如图①,有PF=PE,PF=-m+4PE=m+3,∴-m+4=m+3,解得m=,此时F(,0);②当∠PEF=90°时,如图②,有EP=EF,EF的长等于点E的纵坐标,∴EF=-m+4,∴∴-m+4=m+3,解得:m=.∴点E的横坐标为x==-,∴F(-,0);③当∠PFE=90°时,如图③,有FP=FE,∴∠FPE=∠FEP.∵∠FPE+∠EFP+∠FEP=180°,∴∠FPE=∠FEP=45°.作FR⊥PE,点R为垂足,∴∠PFR=180°-∠FPE-∠PRF=45°,∴∠PFR=∠RPF,∴FR=PR.同理FR=ER,∴FR=PE.∵点R与点E的纵坐标相同,∴FR=-m+4,∴-m+4=(m+3),解得:m=,∴PR=FR=-m+4=-+4=,∴点F的横坐标为-=-,∴F(-,0).综上,在x轴上存在点F使△PEF为等腰直角三角形,点F的坐标为(,0)或(-,0)或(-,0).【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式的运用,解答本题时求出函数的解析式是关键.21、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).22、(1)OA=6,OB=3;(2)S=|6﹣t|(t≥0);(3)t=3或1.【分析】(1)根据算术平方根和绝对值的非负性质即可求得m、n的值,即可解题;(2)连接PB,t秒后,可求得OP=6﹣t,即可求得S的值;(3)作出图形,易证∠OBA=∠OPE,只要OP=OB,即可求证△EOP≌△AOB,分两种情形求得t的值,即可解题.【详解】(1)∵|m﹣n﹣3|+=0,且|m﹣n﹣3|≥0,≥0∴|m﹣n﹣3|==0,∴n=3,m=6,∴点A(0,6),点B(3,0);(2)连接PB,t秒后,AP=t,OP=|6﹣t|,∴S=OP•OB=|6﹣t|;(t≥0)(3)作出图形,∵∠OAB+∠OBA=10°,∠OAB+∠APD=10°,∠OPE=∠APD,∴∠OBA=∠OPE,∴只要OP=OB,即可求证△EOP≌△AOB,∴AP=AO﹣OP=3,或AP′=OA+OP′=1∴t=3或1.【点睛】本题考查了算术平方根及绝对值非负性的性质,全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△EOP≌△AOB是解题的关键.23、(1);(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学排球教案集
- 企业采购管理规范与流程优化
- 浙江省科研机构聘用合同模板
- 石材加工机械招投标合同范例
- 企业与高校合作研发协议
- 古建筑修复监理工程师聘用条款
- 商业综合体招标密封条
- 大型活动搅拌车租赁协议
- 消防设施招投标奖励规定
- 机场物业招聘合同
- 人教版小学数学一年级上册小学生口算天天练
- SRM容灾解决专项方案
- 输血相关移植物抗宿主疾病课件
- 2024-2030年熊胆粉产业市场深度调研及发展趋势与投资前景预测研究分析报告
- 可靠性教材工程师模拟考试(4)附有答案
- GB/T 18029.8-2024轮椅车第8部分:静态强度、冲击强度及疲劳强度的要求和测试方法
- 《工程项目审计》课件
- 小学道德与法治四年级上册第二单元作业设计
- 2020新青岛版(六三制)四年级上册科学课件(全册).p
- 2024年巴西机器人工具快换装置市场机会及渠道调研报告
- 脑血管供血不足患者的护理查房
评论
0/150
提交评论