版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省农安县第四中学2025届八年级数学第一学期期末达标检测试题末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤32.以下关于直线的说法正确的是()A.直线与x轴的交点的坐标为(0,-4)B.坐标为(3,3)的点不在直线上C.直线不经过第四象限D.函数的值随x的增大而减小3.如图所示,有一个长、宽各2米,高为3米且封闭的长方体纸盒,一只昆虫从顶点A要爬到顶点B,那么这只昆虫爬行的最短路程为()A.3米 B.4米 C.5米 D.6米4.一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A.150° B.180° C.135° D.不能确定5.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣66.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.两处 C.三处 D.四处7.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲乙丙丁平均数(分)92959592方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25° B.30° C.35° D.40°9.已知△ABC为直角坐标系中任意位置的一个三角形,现将△ABC的各顶点横坐标乘以-1,得到△A1B1C1,则它与△ABC的位置关系是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.关于直线y=x对称10.若,则对于任意一个a的值,x一定是()A.x<0 B.x0 C.无法确定 D.x>011.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.12.如图,是宜宾市某周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.出现频率最高的是28℃D.平均数是26℃二、填空题(每题4分,共24分)13.计算:=_________.14.已知等腰的两边长分别为3和5,则等腰的周长为_________.15.已知与互为相反数,则__________16.比较大小:_____1.(填“>”、“=”或“<”)17.如图,在△ABC中,DE是AB的垂直平分线,且分别交AB、AC于点D和E,∠A=50°,∠C=60°,则∠EBC等于_____度.18.若关于x的分式方程的解为正实数,则实数m的取值范围是____.三、解答题(共78分)19.(8分)从2019年9月1日起,我市积极开展垃圾分类活动,市环卫局准备购买、两种型号的垃圾箱,通过市场调研得知:购买3个型垃圾箱和2个型垃圾箱共需540元;购买2个型垃圾箱比购买3个型垃圾箱少用160元.(1)求每个型垃圾箱和型垃圾箱各多少元?(2)该市现需要购买、两种型号的垃圾箱共30个,设购买型垃圾箱个,购买型垃圾箱和型垃圾箱的总费用为元,求与的函数表达式,如果买型垃圾箱是型垃圾箱的2倍,求出购买型垃圾箱和型垃圾箱的总费用.20.(8分)如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是______________(SSS,SAS,ASA,AAS从其中选择一个);(2)∠ACB与∠ABC的数量关系为:___________________21.(8分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下表:命中环数78910甲命中相应环数的次数2201乙命中相应环数的次数1310(1)求甲、乙两人射击成绩的平均数;(2)甲、乙两人中,谁的射击成绩更稳定些?请说明理由.22.(10分)在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.23.(10分)某区为加快美丽乡村建设,建设秀美幸福薛城,对A,B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2个A类村庄和5个B类村庄共投人资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金多少万元?24.(10分)解方程:(1)4x2=25(2)(x﹣2)3+27=025.(12分)某工厂计划生产A、B两种产品共50件,已知A产品成本2000元/件,售价2300元/件;B种产品成本3000元/件,售价3500元/件,设该厂每天生产A种产品x件,两种产品全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本140000元,那么该厂生产的两种产品全部售出后最多能获利多少元?26.如图,在平面直角坐标系中,A(-2,4),B(-3,1),C(1,-2).(1)在图中作出△ABC关于y轴的对称图形△A′B′C′;(2)写出点A′、B′、C′的坐标;(3)连接OB、OB′,请直接回答:①△OAB的面积是多少?②△OBC与△OB′C′这两个图形是否成轴对称.
参考答案一、选择题(每题4分,共48分)1、C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.2、B【分析】利用一次函数图象上点的坐标特征可得出结论A错误,把(3,3)代入函数解析式可得结论B正确;利用一次函数图象与系数的关系可得出结论C错误;利用一次函数的性质可得出结论D错误.【详解】解:A、当y=0时,2x-4=0,解得:x=2,∴直线y=2x-4与x轴的交点的坐标为(2,0),选项A不符合题意;B、当x=3时,y=2x-4=2,∴坐标为(3,3)的点不在直线y=2x-4上,选项B符合题意;C、∵k=2>0,b=-4<0,∴直线y=2x-4经过第一、三、四象限,选项C不符合题意;D、∵k=2>0,∴函数y=2x-4的值随x的增大而增大,选项D不符合题意.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一判定四个选项的正误是解题的关键.3、C【解析】解:由题意得,路径一:;路径二:;路径三:为最短路径,故选C.4、A【详解】解:根据对顶角相等,所以∠CME=∠AMN,∠BNF=∠MNA,在三角形AMN中,内角和为180°,所以∠CME+∠BNF=180-30=150°故选:A5、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.7、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】解:∵3.6<7.4<8.1,
∴甲和乙的最近几次数学考试成绩的方差最小,发挥稳定,
∵95>92,
∴乙同学最近几次数学考试成绩的平均数高,
∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择乙.
故选B.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8、D【解析】∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°.∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D﹣∠A=65°﹣25°=40°.故选D.9、B【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),从而求解.【详解】根据轴对称的性质,∵横坐标都乘以−1,∴横坐标变成相反数,根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴△ABC与△A′B′C′关于y轴对称,故选:B.【点睛】本题主要考查了平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,比较简单.10、D【解析】分析:根据完全平方公式对a2-2a+3进行配方后,再由非负数的性质,可求得x的取值范围.详解:x=a2-2a+3=(a2-2a+1)+2=(a-1)2+2,∵(a-1)2≥1,∴(a-1)2+2>1.故选D.点睛:本题考查了完全平方公式的利用,把式子a2-2a+3通过拆分常数项把它凑成完全平方式是解本题的关键,因为一个数的平方式非负数,所以一个非负数加上一个正数,结果肯定>1.11、A【分析】根据材料中公式将1,2,代入计算即可.【详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【点睛】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.12、D【分析】根据折线统计图,写出每天的最高气温,然后逐一判断即可.【详解】解:由折线统计图可知:星期一的最高气温为20℃;星期二的最高气温为28℃;星期三的最高气温为28℃;星期四的最高气温为24℃;星期五的最高气温为26℃;星期六的最高气温为30℃;星期日的最高气温为22℃.这7天的最高气温是30℃,故A选项正确;这7天的最高气温中,最低气温是20℃,故B选项正确;这7天的最高气温中,出现频率最高的是28℃,故C选项正确;这7天最高气温的平均气温是(20+28+28+24+26+30+22)÷7=℃,故D选项错误.故选D.【点睛】此题考查的是根据折线统计图,掌握根据折线统计图解决实际问题和平均数公式是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】先利用二次根式的性质,再判断的大小去绝对值即可.【详解】因为,所以故答案为【点睛】此题考查的是二次根式的性质和去绝对值.14、11或1【分析】根据等腰三角形的定义,分两种情况:腰为3,底为5;腰为5,底为3,然后用三角形三边关系验证一下即可.【详解】当腰为3,底为5,三角形三边为3,3,5,满足三角形三边关系,此时三角形的周长为;当腰为5,底为3,三角形三边为5,5,3,满足三角形三边关系,此时三角形的周长为;综上所述,等腰的周长为11或1.故答案为:11或1.【点睛】本题主要考查等腰三角形的定义,分情况讨论是解题的关键.15、-8【分析】由题意根据相反数的性质即互为相反数的两数之和为0,进行分析计算即可.【详解】解:∵与互为相反数,∴,解得.故答案为:-8.【点睛】本题考查相反数的性质,熟练掌握相反数的性质即互为相反数的两数之和为0进行分析是解题的关键.16、>.【解析】先求出1=,再比较即可.【详解】∵12=9<10,∴>1,故答案为>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.17、1【分析】根据三角形内角和定理求出∠ABC,根据线段垂直平分线的性质得到EA=EB,得到∠EBA=∠A=50°,结合图形计算,得到答案.【详解】解:∵A=50°,∠C=60°,∴∠ABC=180°-50°-60°=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=50°,∴∠EBC=∠ABC-∠EBA=70°-50°=1°,故答案为:1.【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18、m<6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】,方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=,由题意得,>0,解得,m<6,∵≠2,∴m≠2,∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.三、解答题(共78分)19、(1)每个型垃圾箱100元,每个型垃圾箱120元;(2)与的函数表达式为:(且a为整数),若型垃圾箱是型垃圾箱的2倍,总费用为3200元.【分析】(1)设每个型垃圾箱x元,每个型垃圾箱y元,根据“购买3个型垃圾箱和2个型垃圾箱共需540元;购买2个型垃圾箱比购买3个型垃圾箱少用160元”列出方程组解答即可;(2)根据(1)中的单价可列出与的函数表达式,由型垃圾箱是型垃圾箱的2倍得出a的值,代入函数表达式计算即可.【详解】解:(1)设每个型垃圾箱x元,每个型垃圾箱y元,则,解得:∴每个型垃圾箱100元,每个型垃圾箱120元.(2)购买型垃圾箱个,则型垃圾箱个,∴(且a为整数)若型垃圾箱是型垃圾箱的2倍,则,∴,∴故总费用为3200元.【点睛】本题考查了二元一次方程组的应用及函数表达式的应用,根据题意列出方程组及函数表达式是解题的关键.20、SAS∠ACB=2∠ABC【解析】试题分析:(1)根据已知以及作法可知可以利用SAS判定△ABD与△AED全等;(2)根据△ABD≌△AED,可得∠B=∠E,由作法可知CE=CD,从而得∠E=∠CDE,再利用三角形外角的性质即可得∠ACB=2∠ABC.试题解析:(1)延长AC到E,使CE=CD,连接DE,∵AB=AC+CD,AE=AC+CE,∴AE=AB,又∵AD是∠BAC的平分线,∴∠BAD=∠CAD,又AD是公共边,∴△ABD≌△AED(SAS),故答案为SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠ACB=2∠B,故答案为∠ACB=2∠B.【点睛】本题考查了三角形全等的判定与性质,等腰三角形的性质、三角形的外角等,正确添加辅助线是解题的关键.21、(1)甲、乙两人射击成绩的平均数均为8环;(2)乙.【分析】(1)直接利用算术平均数的计算公式计算即可;(2)根据方差的大小比较成绩的稳定性.【详解】(1)(环);=8(环);(2)∵甲的方差为:[(7-8)2+(7-8)2+(8-8)2+(8-8)2+(10-8)2]=1.2(环2);乙的方差为:[(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4(环2);∴乙的成绩比较稳定.【点睛】本题考查了极差和方差,极差和方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、(1)①见解析;②DE=;(2)DE的值为3或3【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=1.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中,DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=,∴DE=;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=3;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=1,∴DE=3,综上所述,DE的值为3或3.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.23、(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120万元、180万元;(2)乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【解析】(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x、y万元,根据建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元,甲镇建设了2个A类村庄和5个B类村庄共投入资金1140万元,列方程组求解;
(2)根据(1)求出的值代入求解.【详解】解:(1)设建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是x万元、y万元.由题意,得解得答:建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是120、180万元.(2)3×120+6×180=1440(万元).答:乙镇3个A类美丽村庄和6个B类美丽村庄的改建共需资金1440万元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,找出等量关系,列方程组求解.24、(1)x=±;(2)x=﹣1【分析】(1)由直接开平方法,即可求解;(2)先移项,再开立方,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件中国气候教学课件
- 北师大版四下英语教案
- 《麦比乌斯圈》大班科学教案
- 智能化停车场建设项目招投标
- 小学二年级语文下册第四.五.六单元教案
- 养殖业资格证发放管理办法
- 图书馆吊顶施工合同
- 地铁站通信信号系统招投标文件
- 灾害救援:枪支弹药管理办法
- 上海市物业招投标策略与技巧
- 2024简易租房合同下载打印
- 前程无忧行测题库
- 新质生产力-讲解课件
- 2024年西安陕鼓动力股份有限公司招聘笔试冲刺题(带答案解析)
- 组织行为与领导力智慧树知到期末考试答案2024年
- 艺术中国智慧树知到期末考试答案2024年
- 30道计量员岗位常见面试问题含HR问题考察点及参考回答
- 四川省公需科目2024年度数字经济与驱动发展考试题库及答案
- 京瓷哲学培训课件
- 部编版三年级语文(上册)标点符号专项训练题(含答案)
- 工程测量部分案例分析
评论
0/150
提交评论