版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省楚雄北浦中学2025届数学八年级第一学期期末教学质量检测试题检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1 B. C.2 D.2.如图,在数轴上表示实数的点可能是()A.点 B.点 C.点 D.点3.若分式有意义,则的取值范围为()A. B. C. D.4.如图,中,,的垂直平分线交于,交于,平分,则的度数为()A.30° B.32° C.34° D.36°5.十二边形的内角和为()A.1620° B.1800° C.1980° D.2160°6.如图,直线经过点,则关于的不等式的解集是()A.x>2 B.x<2 C.x≥2 D.x≤27.如图,在平面直角坐标系中,为坐标原点,点在轴正半轴上,点,,……在射线上,点,,……在射线上,,,,……均为等边三角形,依此类推,若,则点的横坐标是()A. B. C. D.8.等式成立的x的取值范围在数轴上可表示为(
)A. B. C. D.9.如图,点,分别在线段,上,与相交于点,已知,现添加一个条件可以使,这个条件不能是()A. B.C. D.10.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为__________
.
12.分解因式________________.13.如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为____.14.对于实数,,定义运算“”如下:.若,则_____.15.如图,在长方形ABCD中,AB=2,BC=4,点P在AD上,若△PBC为直角三角形,则CP的长为_____.16.如图,在中,,,是的一条角平分线,为的中点,连接,若,则的面积为_________.17.化简:的结果为_______.18.A(3,y1),B(1,y2)是直线y=kx+3(k>0)上的两点,则y1____y2(填“>”或“<).三、解答题(共66分)19.(10分)计算:3a2·(-b)-8ab(b-a)20.(6分)先阅读下列的解答过程,然后作答:形如的化简,只要我们找到两个数、使,,这样,,于是.例如:化简.解:这里,,由于,,即,,.由上述例题的方法化简:(1);(2)21.(6分)某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x个足球,商店卖完这批球(篮球和足球)的利润为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)商店现将篮球每个涨价a元销售,足球售价不变,发现这批球卖完后的利润和x的取值无关.求卖完这批球的利润和a的值.22.(8分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.23.(8分)如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,(1)用尺规作图作∠ABC的平分线BE,且交AC于点E,交AD于点F(不写作法,保留作图痕迹);(2)求∠BFD的度数.24.(8分)计算:(1).(2).25.(10分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若,点在、内部,,,求的度数.(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.(3)如图3,写出、、、之间的数量关系?(不需证明)(4)如图4,求出的度数.26.(10分)某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x分钟,两种方式的费用分别为y1(元)和y2(元).(1)分别求出y1、y2与x之间的函数关系式.(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据角平分线的定义可得∠AOP=∠AOB=30°,再根据直角三角形的性质求得PD=OP=1,然后根据角平分线的性质和垂线段最短得到结果.【详解】∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,M是OP的中点,DM=1,∴OP=1DM=4,∴PD=OP=1,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=1.故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.2、C【分析】先针对进行估算,再确定是在哪两个相邻的整数之间,然后进一步得出答案即可.【详解】∵,∴,即:,∴在3与4之间,故数轴上的点为点M,故选:C.【点睛】本题主要考查了二次根式的估算,熟练掌握相关方法是解题关键.3、D【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】解:∵分式有意义,∴x+1≠0,
解得x≠-1.
故选:D.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.4、D【分析】根据,则∠ABC=∠C,由垂直平分线和角平分线的性质,得到∠ABC=∠C=2∠A,根据三角形内角和定理,即可得到答案.【详解】解:∵,∴∠ABC=∠C,∵平分,∴,∵DE垂直平分AB,∴,∴∠ABC=∠C=2∠A,∵∠ABC+∠C+∠A=180°,∴,∴.故选:D.【点睛】本题考查了三角形内角和定理和等腰三角形性质、线段垂直平分线性质的应用,以及角平分线的性质.注意:线段垂直平分线上的点到线段两个端点的距离相等.5、B【分析】根据多边形内角和公式解答即可;【详解】解:十二边形的内角和为:(12﹣2)•180°=1800°.故选B.【点睛】本题考查了多边形的内角和的求法,牢记多边形公式(n-2)×180(n≥3)是解答本题的关键.6、D【分析】写出函数图象在x轴上方及x轴上所对应的自变量的范围即可.【详解】解:当x≤2时,y≥1.所以关于x的不等式kx+3≥1的解集是x≤2.故选D.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7、B【分析】根据等边三角形的性质和以及外角的性质,可求得,可求得,由勾股定理得,再结合的直角三角形的性质,可得点横坐标为,利用中位线性质,以此类推,可得的横坐标为,的横坐标为……,所以的横坐标为,即得.【详解】,为等边三角形,由三角形外角的性质,,,由勾股定理得,的纵坐标为,由的直角三角形的性质,可得横坐标为,以此类推的横坐标为,的横坐标为……,所以的横坐标为,横坐标为.故选:B.【点睛】考查了图形的规律,等边三角形的性质,的直角三角形的性质,外角性质,勾股定理,熟练掌握这些性质内容,综合应用能力很关键,以及类比推理的思想比较重要.8、B【分析】根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.9、C【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理ASA、AAS、SAS添加条件,逐一证明即可.【详解】∵AB=AC,∠A为公共角∴A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添,利用AAS即可证明△ABE≌△ACD;C、如添,因为SSA不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添,利用SAS即可证明△ABE≌△ACD.故选:C.【点睛】本题考查全等三角形的判定定理的掌握和理解,熟练掌握全等三角形的判定定理是解题关键.10、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【点睛】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.二、填空题(每小题3分,共24分)11、7.5【解析】试题解析:根据题意,阴影部分的面积为三角形面积的一半,
阴影部分面积为:故答案为:12、【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴.故答案为:【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13、.【分析】根据矩形的性质得到∠BAD=∠ABC=90°,BC=AD,由折叠的性质得到AF=AD,∠FAE=∠DAE,求得∠BAF=30°,∠DAF=60°,得到∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小,推出△ABG是等边三角形,得到AG=BG=AB=5,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,BC=AD.∵将△ADE沿AE所在直线翻折,得到△AFE,∴AF=AD,∠FAE=∠DAE.∵点F恰好是BC的中点,∴BF,∴∠BAF=30°,∴∠DAF=60°,∴∠FAE,∴∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小.∵MN⊥AD,∴四边形AHMN是矩形,∴AN=HM,∴BM+MH=BM+AN=HG.∵AB=AG,∠BAG=60°,∴△ABG是等边三角形,∴AG=BG=AB=5,∴,∴HG,∴BM+AN的最小值为.故答案为:.【点睛】本题考查了翻折变换((折叠问题)),矩形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.14、【分析】根据题意列出方程,然后用直接开平方法解一元二次方程.【详解】解:根据题目给的算法列式:,整理得:,,,.故答案是:.【点睛】本题考查解一元二次方程,解题的关键是掌握解一元二次方程的方法.15、1或1或1【分析】分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得CP=;②当∠BPC=90°时,由勾股定理得11+AP1+11+(4﹣AP)1=16,求出AP=1,DP=1,由勾股定理得出CP=;③当∠BCP=90°时,P与D重合,CP=CD=1.【详解】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=4,∠A=∠ABC=∠BCD=∠D=90°,分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得:CP=;②当∠BPC=90°时,由勾股定理得:BP1=AB1+AP1=11+AP1,CP1=CD1+DP1=11+(4﹣AP)1,BC1=BP1+CP1=41,∴11+AP1+11+(4﹣AP)1=16,解得:AP=1,∴DP=1,∴CP=;③当∠BCP=90°时,P与D重合,CP=CD=1;综上所述,若△PBC为直角三角形,则CP的长为或或1;故答案为:1或1或1.【点睛】本题考查了矩形的性质、勾股定理、解一元二次方程以及分类讨论等知识;熟练掌握勾股定理和分类讨论是解题的关键.16、【分析】作于点F,利用角平分线的性质可得DF长,由中点性质可得AE长,利用三角形面积公式求解.【详解】解:如图,作于点F是的角平分线为的中点所以的面积为.故答案为:.【点睛】本题考查了角平分线的性质,灵活利用角平分线上的点到角两边的距离相等是解题的关键.17、【分析】先化简二次根式,再合并同类二次根式,即可求解.【详解】=,故答案是:【点睛】本题主要考查二次根式的加法,掌握合并同类二次根式,是解题的关键.18、>.【分析】由k>0,利用一次函数的性质可得出y值随x值的增大而增大.再结合3>1即可得出y1>y1.【详解】解:∵k>0,∴y值随x值的增大而增大.又∵3>1,∴y1>y1.故答案为:>.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.三、解答题(共66分)19、【分析】根据单项式乘以单项式和单项式乘以多项式的运算法则进行计算即可得解.【详解】原式==.【点睛】本题考查了整式的运算,掌握单项式乘以单项式以及单项式乘以多项式的运算法则是解题的关键.20、(1);(2)【分析】(1)根据材料里提供的方法化简即可得解;(2)根据材料里提供的方法化简即可得解.【详解】(1)原式,(2)原式.【点睛】本题考查了复合二次根式的化简,关键是确定两个数、,然后根据二次根式的性质化简.21、(1)y=5x+600(0≤x≤60);(2)a=5,900元【分析】(1)设商店共有x个足球,则篮球的个数为(60-x),根据利润=售价-进价,列出等量关系即可;
(2)将(1)中的(50-40)换成(50+a-40)进行整理,分析即可.【详解】解:(1)设商店共有x个足球,依题意得:y=(65-50)x+(50-40)(60-x)即:y=5x+600(0≤x≤60);(2)根据题意,有y=(65-50)x+(50+a-40)(60-x)=(5-a)x+60(10+a)∵y的值与x无关,∴a=5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.22、(1)y=x+2;(2)1【分析】(1)由图可知、两点的坐标,把两点坐标代入一次函数即可求出的值,进而得出结论;(2)由点坐标可求出的长再由点坐标可知的长,利用三角形的面积公式即可得出结论.【详解】解:(1)由图可知、,,解得,故此一次函数的解析式为:;(2)由图可知,,,,,.答:的面积是1.【点睛】此题考查的是待定系数法求一次函数的解析式及一次函数图象上点的坐标特点,先根据一次函数的图象得出、、三点的坐标是解答此题的关键.23、(1)见解析;(2)55°【分析】(1)根据角平分线的尺规作图可得;
(2)由三角形内角和定理得出∠ABC=70°,根据BE平分∠ABC知∠DBC=∠ABC=35°,从而由AD⊥BC可得∠BFD=90°−∠DBC=55°.【详解】解:(1)如图所示,BE即为所求;
(2)∵∠BAC=50°,∠C=60°,
∴∠ABC=180°−∠BAC−∠C=70°,
由(1)知BE平分∠ABC,
∴∠DBC=∠ABC=35°,
又∵AD⊥BC,
∴∠ADB=90°,
则∠BFD=90°−∠DBC=55°.【点睛】本题主要考查作图−基本作图,解题的关键是熟练掌握角平分线的尺规作图及三角形内角和定理与直角三角形性质的应用.24、(1).(2).【分析】(1)先去括号,并化简,然后合并同类二次根式即可;(2)先逐项化简,再算加减即可【详解】(1)原式.(2)原式.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25、(1)80°;(2)∠B=∠D+∠BPD,证明见解析;(3)∠BPD=∠B+∠D+BQD;;(4)360°.【分析】(1)过P作平行于AB的直线,根据内错角相等可得出三个角的关系,然后将∠B=50°,∠D=30°代入,即可求∠BPD的度数;(2)先由平行线的性质得到∠B=∠BOD,然后根据∠BOD是三角形OPD的一个外角,由此可得出三个角的关系;(3)延长BP交QD于M,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(4)根据三角形外角性质得出∠CMN=∠A+∠E,∠DNB=∠B+∠F,代入∠C+∠D+CMN+∠DNM=360°即可求出答案.【详解】(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防设施电伴热施工合同
- 建筑拆除施工总价承包合同
- 互联网公司CTO招聘合同样本
- 物流运输木门更换工程合同
- 汽车维修项目审计要点
- 建筑隔震工程倒板施工协议
- 媒体行业薪酬分配改革管理办法
- 网络文学改编剧招聘合同
- 咨询公司公关部聘用合同
- 建筑检测探伤施工合同
- 2024年鄂尔多斯市国资产投资控股集团限公司招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 校企共建实验室方案
- 2024年电商直播行业现状及发展趋势研究
- 2021年4月自考04735数据库系统原理试题及答案含解析
- MOOC 管理学原理-东北财经大学 中国大学慕课答案
- 农贸市场食品安全事故处置方案
- 六年级语文总复习课《修改病句》修改课件市公开课一等奖省赛课获奖课件
- (2024年)部队战备教育教案x
- 《焚烧烟气净化产物资源化利用 工业用盐》编制说明
- 《交互设计》课件
- 怀孕的hcg验血报告单
评论
0/150
提交评论