上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题含解析_第1页
上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题含解析_第2页
上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题含解析_第3页
上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题含解析_第4页
上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市嘉定区南翔镇怀少学校2025届八年级数学第一学期期末监测模拟试题监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是()A.85° B.80° C.75° D.70°2.4张长为a、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中空白部分的面积为,阴影部分的面积为.若,则a、b满足()A. B. C. D.3.计算的值为().A. B.-2 C. D.24.分式有意义时x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x<15.一次跳远比赛中,成绩在4.05米以上的有8人,频率为0.4,则参加比赛的共有()A.40人 B.30人 C.20人 D.10人6.若分式的值为零,则的值为()A. B.2 C. D.7.下列运算正确的是()A. B. C. D.8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A.8 B.9 C.10 D.129.下列各式中,是分式的是()A. B. C. D.10.等式成立的x的取值范围在数轴上可表示为(

)A. B. C. D.二、填空题(每小题3分,共24分)11.如图,A.B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有______个.12.已知,点在第二象限,则点在第_________象限.13.用科学记数法表示:0.00000036=14.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.15.已知(a-2)2+=0,则3a-2b的值是______.16.如图所示,为估计池塘两岸边,两点间的距离,在池塘的一侧选取点,分别取、的中点,,测的,则,两点间的距离是______.17.邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是_________元.18.已知一次函数,若y随x的增大而减小,则的取值范围是___.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别是,,.(1)作出向左平移个单位的,并写出点的坐标.(2)作出关于轴对称的,并写出点的坐标.20.(6分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是1.运动员甲测试成绩统计表测试序号12345618910成绩(分)16816868(1)填空:______;______.(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?21.(6分)如图,在中,,D在边AC上,且.如图1,填空______,______如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.求证:是等腰三角形;试写出线段AN、CE、CD之间的数量关系,并加以证明.22.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.23.(8分)如图,已知在同一直线上,,.求证:.24.(8分)解方程与不等式组(1)解方程:(2)解不等式组25.(10分)一次函数的图像经过,两点.(1)求的值;(2)判断点是否在该函数的图像上.26.(10分)如图,在△ABC中,AB=AC,点D在BC边上,AE∥BC,AE=BD,求证:AD=CE.

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用角平分线的性质可得∠ABD=∠ABC=×70°=35°,再根据三角形外角的性质可得∠BDC=∠A+∠ABD=50°+35°=85°.【详解】解:∵BD平分∠ABC,∠ABC=70°,∴∠ABD=∠ABC=×70°=35°,∵∠A=50°,∴∠BDC=∠A+∠ABD=50°+35°=85°,故选A.【点睛】此题主要考查了角平分线的定义和三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.2、D【分析】先用a、b的代数式分别表示,,再根据,得,整理,得,所以.【详解】解:,,∵,∴,整理,得,∴,∴.故选D.【点睛】本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.3、D【分析】由负整数指数幂的定义,即可得到答案.【详解】解:;故选:D.【点睛】本题考查了负整数指数幂,解题的关键是熟练掌握负整数指数幂的定义进行解题.4、A【解析】试题解析:根据题意得:x−1≠0,解得:x≠1.故选A.点睛:分式有意义的条件:分母不为零.5、C【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【详解】∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故选C.【点睛】考查频数与频率,掌握数据总和=频数÷频率是解题的关键.6、C【分析】分式值为零的条件是分子等于零且分母不等于零.据此列出关于的方程、不等式即可得出答案.【详解】∵∴∴解得故选:C【点睛】本题考查了分式值为零需满足的条件,分子等于零且分母不等于零,二者缺一不可.7、C【分析】分别根据积的乘方运算法则、同底数幂的除法法则和完全平方公式计算各项,进而可得答案.【详解】解:A、,故本选项运算错误,不符合题意;B、,故本选项运算错误,不符合题意;C、,故本选项运算正确,符合题意;D、,故本选项运算错误,不符合题意;故选:C.【点睛】本题考查了幂的运算性质和完全平方公式,属于基础题目,熟练掌握基本知识是解题的关键.8、A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.9、C【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】∵没有分母,、分母中不含字母,这三个代数式均为整式;分母中含有字母,是分式.∴选C故选:C【点睛】本题考查了分式的定义,属基础题,正确熟练掌握分式定义是解此题的关键.10、B【分析】根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.二、填空题(每小题3分,共24分)11、9【解析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.12、四【分析】首先根据点A所在的象限可判定,然后即可判定点B所在的象限.【详解】∵点在第二象限,∴∴∴点B在第四象限故答案为四.【点睛】此题主要考查根据坐标判定点所在的象限,熟练掌握,即可解题.13、3.6×10﹣1.【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000036=3.6×10﹣1,考点:科学记数法—表示较小的数14、1【分析】先根据作图过程可得AP为的角平分线,再根据角平分线的性质可得点D到AB的距离,然后根据三角形的面积公式即可得.【详解】由题意得:AP为的角平分线点D到AB的距离为4,即的边AB上的高为4则的面积是故答案为:1.【点睛】本题考查了角平分线的作图过程与性质,熟记角平分线的性质是解题关键.15、1【分析】根据非负数的性质列式求出、b的值,然后代入代数式进行计算即可得解.【详解】∵(-2)2+=2,∴-2=2,b+2=2,解得:=2,b=-2,则3-2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.16、36【分析】根据E、F是CA、CB的中点,即EF是△CAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【详解】解:据E、F是CA、CB的中点,即EF是△CAB的中位线,∴EF=AB,∴AB=2EF=2×18=36.故答案为36.【点睛】本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.17、5.1【分析】由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x份答卷,根据重量小于等于100列出方程组求出x的取值范围,然后分情况计算所贴邮票的总金额即可.【详解】解:11份答卷以及两个信封总计:12×11+2×4=140(克),由题意知,把它分成两个小于或等于100克的信封比较省钱,设其中一个信封装x份答卷,则另一个信封装(11−x)份答卷,由题意得:,解得:3≤x≤8,∴共有三种情况:①一个信封装3份答卷,另一个信封装8份答卷,装3份答卷的信封重量为12×3+4=40(克),装8份答卷的信封重量为140-40=100(克),此时所贴邮票的总金额为:0.8×2+0.8×5=5.1(元);②一个信封装4份答卷,另一个信封装7份答卷,装4份答卷的信封重量为12×4+4=52(克),装7份答卷的信封重量为140-52=88(克),此时所贴邮票的总金额为:0.8×3+0.8×5=1.4(元);③一个信封装5份答卷,另一个信封装1份答卷,装5份答卷的信封重量为12×5+4=14(克),装1份答卷的信封重量为140-14=71(克),此时所贴邮票的总金额为:0.8×4+0.8×4=1.4(元);∴所贴邮票的总金额最少是5.1元,故答案为:5.1.【点睛】本题考查了一元一次不等式组的实际应用,正确理解题意,分析得出把它分成两个小于或等于100克的信封比较省钱,进而列出方程组是解题的关键.18、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,

∴k-1<0,

解得k<1,

故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.三、解答题(共66分)19、(1)见解析,(-3,5);(2)见解析,(4,-1)【分析】(1)根据题意画出图象即可,从图象即可得出A1的坐标.(2)根据题意画出图象即可,从图象即可得出C2的坐标.【详解】(1)△A1B1C1即为所求三角形,A1坐标为:(-3,5).(2)△A2B2C2即为所求三角形,C2坐标为:(4,-1).【点睛】本题考查作图-平移和轴对称图形,关键在于熟悉作图的基础知识.20、(1)1,1;(2)选乙运动员更合适,理由见解析.【分析】(1)观察表格,根据众数的定义即可求解;(2)先分别求出三人的方差,再根据方差的意义求解即可.【详解】解:(1)∵运动员甲测试成绩的众数是1,∴数据1出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中1分出现的次数为4次,而1分已经出现2次,∴.故答案为:1,1;(2)甲成绩重新排列为:6、6、6、1、1、1、1、8、8、8,∴,,,,,,∵,,∴选乙运动员更合适.【点睛】本题考查方差、条形图、折线图、中位数、众数、平均数等知识,熟练掌握基本概念以及运用公式求出平均数和方差是解题的关键.21、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.【分析】(1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;(2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.【详解】解:(1)∵BD=BC,∴∠BDC=∠C,∵AB=AC,∴∠ABC=∠C,∴∠A=∠DBC,∵AD=BD,∴∠A=∠DBA,∴∠A=∠DBA=∠DBC=∠ABC=∠C,∵∠A+∠ABC+∠C=5∠A=180°,∴∠A=36°,∠C=72°;故答案为36,72;(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,∴∠ABD=∠CBD=36°,∵BH⊥EN,∴∠BHN=∠EHB=90°,在△BNH与△BEH中,,∴△BNH≌△BEH(ASA),∴BN=BE,∴△BNE是等腰三角形;②CD=AN+CE,理由:由①知,BN=BE,∵AB=AC,∴AN=AB﹣BN=AC﹣BE,∵CE=BE﹣BC,∴AN+CE=AC﹣BC,∵CD=AC﹣AD=AC﹣BD=AC﹣BC,∴CD=AN+CE.【点睛】本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.22、(1)见解析;(2)见解析;(3)DE=BE-AD,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;

(2)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,从而有DE=CE-CD=AD-BE;

(3)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,于是有DE=CD-CE=BE-AD.【详解】(1)证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∵DE=CE+CD∴DE=AD+BE(2)证明:与(1)一样可证明△ADC≌△CEB,

∴CD=BE,AD=CE,

∴DE=CE-CD=AD-BE;(3)DE=BE-AD.证明如下:证明:证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD和△CBE中,∵∴△ACD≌△CBE(AAS)∴CE=AD,CD=BE∴DE=CD-CE=BE-AD;【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.23、证明见解析.【分析】由,则AD=AE,然后利用SAS证明△ABE≌△ACE,即可得到AB=AC.【详解】解:∵,∴AD=AE,∵,,∴△ABE≌

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论