版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江绍兴市越城区数学八年级第一学期期末教学质量检测模拟试题测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.有理数的算术平方根是()A. B. C. D.2.已知x2-ax+16可以写成一个完全平方式,则可为()A.4 B.8 C.±4 D.±83.如图,在中,边的垂直平分线交于点,交于点,若,,那么的周长是()A. B. C. D.无法确定4.已知,点在内部,点与点关于对称,点与点关于对称,则是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形5.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A. B.C. D.6.已知直角三角形纸片的两条直角边长分别为和,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则()A. B.C. D.7.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定8.下列变形正确的是()A. B. C. D.9.如图,将30°的三角尺以直角顶点A为旋转中心顺时针旋转,使点C落在边BC的C'处,则其旋转角的大小为()A.30° B.60° C.90° D.150°10.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则下列等式不正确的是()A.AB=AC B.BE=DC C.AD=DE D.∠BAE=∠CAD二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______12.点和点关于轴对称,则的值是______.13.如图,在中,按以下步骤作图:第一步:分别以点为圆心,以大于的长为半径画弧,两弧相交于两点;第二步:作直线交于点,连接.(1)是______三角形;(填“等边”、“直角”、“等腰”)(2)若,则的度数为___________.14.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.15.如图,ABCDE是正五边形,△OCD是等边三角形,则∠COB=_____°.16.如图,直线y=2x﹣1分别交x,y轴于点A,B,点C在x轴的正半轴,且∠ABC=45°,则直线BC的函数表达式是_____.17.已知一次函数,当时,____________.18.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.三、解答题(共66分)19.(10分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.20.(6分)先化简,再求值:其中x=.21.(6分)拖拉机开始工作时,油箱中有油30L,每小时耗油5L.(1)写出油箱中的剩余测量Q(L)与工作时间t(h)之间的函数表达式,并求出自变量t的取值范围;(2)当拖拉机工作4h时,油箱内还剩余油多少升?22.(8分)如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.23.(8分)观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(xn+xn-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.24.(8分)已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5米/秒.(1)求B车的平均速度;(2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;(3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.25.(10分)某工地的一间仓库的主视图和左视图如图(单位:米),屋顶由两个完全相同的长方形组成,计算屋顶的总面积.(参考值:,,,)26.(10分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:路线1:高线底面直径,如图所示,设长度为.路线2:侧面展开图中的线段,如图所示,设长度为.请按照小明的思路补充下面解题过程:(1)解:;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)①此时,路线1:__________.路线2:_____________.②所以选择哪条路线较短?试说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【解析】直接利用算术平方根的定义得出答案.【详解】81的算术平方根是:.
故选:C.【点睛】本题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.2、D【分析】完全平方公式是两数的平方和加减两数积的2倍,注意符合条件的a值有两个.【详解】解:∵x2-ax+16可以写成一个完全平方式,
∴,解得:.
故选:D.【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、C【分析】根据中垂线可得出AN=CN,即可将BC转换成AN+BN.【详解】∵MN是AC的垂直平分线,∴AN=CN,∵AB=3,BC=13,∴△ABN的周长=AB+AN+BN=AB+AN+BN=AB+BC=3+13=1.故选C.【点睛】本题考查线段中垂线的计算,关键在于利用中垂线的性质转换线段的长度.4、C【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.【详解】如图,
∵P,P1关于直线OA对称,P、P2关于直线OB对称,
∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,
∵∠AOB=30°,
∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,
∴△P1OP2是等边三角形.
故选C.【点睛】考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.5、A【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.【点睛】本题考查了作图基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.6、B【分析】作图,根据等腰三角形的性质和勾股定理可得,整理即可求解【详解】解:如图,
,
,
.
故选:B.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.7、C【分析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得
BD===9,
在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.
②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.
故选:C.【点睛】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.8、D【分析】根据分式的基本性质,等式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质和等式的基本性质,解题的关键是熟练掌握分式的基本性质进行解题.9、B【分析】旋转的性质可得AC=AC',且∠C=60,可证△ACC'是等边三角形,即可求解.【详解】∵将30°的三角尺以直角顶点A为旋转中心顺时针旋转,∴AC=AC',且∠C=60°∴△ACC'是等边三角形,∴∠CAC'=60°,故选B.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,熟练运用旋转的性质是本题的关键.10、C【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【详解】∵△ABE≌△ACD,
∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,
故选:C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.二、填空题(每小题3分,共24分)11、30°【解析】由折叠的性质可知∠B=∠AEB,因为E点在AC的垂直平分线上,故EA=EC,可得∠EAC=∠C,根据外角的性质得∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,由此可求∠C.解:由折叠的性质,得∠B=∠AEB,∵E点在AC的垂直平分线上,∴EA=EC,∴∠EAC=∠C,由外角的性质,可知∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,即2∠C+∠C=90°,解得∠C=30°.故本题答案为:30°.本题考查了折叠的性质,线段垂直平分线的性质.关键是把条件集中到直角三角形中求解.12、3【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵点A和点B关于y轴对称,∴可得方程组,解得:,∴a-b=3,故答案为:3.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a,b是解题关键.13、等腰68°【分析】(1)根据尺规作图方法可知,直线MN为线段AC的垂直平分线,由垂直平分线的性质可得AD=CD,从而判断△ADC为等腰三角形;(2)由三角形的外角的性质可知∠ADB的度数,再由AB=BD,可得∠BAD=∠ADB,最后由三角形的内角和计算即可.【详解】解:(1)由题意可知,直线MN为线段AC的垂直平分线,∴AD=CD∴△ADC为等腰三角形,故答案为:等腰.(2)∵△ADC是等腰三角形,∴∠C=∠DAC=28°,又∵∠ADB是△ADC的外角,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵∠BAD=∠ADB=56°∴∠B=180°-∠BAD-∠ADB=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查了垂直平分线的尺规作图、等腰三角形的性质,解题的关键是熟知直线MN为线段AC的垂直平分线,并灵活运用等腰三角形中的角度计算.14、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.15、66°【分析】根据题意和多边形的内角和公式,可得正五边形的一个内角是108°,再根据等边三角形的性质和等腰三角形的性质计算即可.【详解】解:∵五边形ABCDE是正五边形,∴∠BCD=108°,CD=BC,∵△OCD是等边三角形,∴∠OCD=60°,OC=CD,∴OC=BC,∠OCB=108°﹣60°=48°,∴∠COB==66°.故答案为:66°.【点睛】本题主要考察了多边形的内角和,关键是得出正五边形一个内角的度数为108°,以及找出△OBC是等腰三角形.16、y=x﹣1【分析】过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,判定△ABO≌△FAE(AAS),即可得出OB,OA得到点F坐标,从而得到直线BC的函数表达式.【详解】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1;令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,如图,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,则,解得,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,解题关键是正确的作出辅助线构造全等三角形.17、【分析】把代入即可求解.【详解】把代入一次函数得-1=-2x+3解得x=2,故填:2.【点睛】此题主要考查一次函数的性质,解题的关键是熟知坐标与函数的关系.18、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.三、解答题(共66分)19、110°【分析】通过对顶角性质得到∠BOD度数,再通过角平分线定义得到∠DOE的度数,通过垂直定义得到∠EOF的度数,再通过角的和差得到∠2的度数,最后通过邻补角性质即可得到∠COF的度数.【详解】解:∵∠BOD与∠AOC是对顶角,且∠AOC=40°,∴∠BOD=∠AOC=40°,∵OE平分∠BOD,∴∠1=∠2=∠BOD=×40°=20°,∵OE⊥OF,∴∠EOF=90°,∴∠2=∠EOF-∠1=90°-20°=70°,∴∠COF=∠COD-∠2=180°-70°=110°.【点睛】本题考查垂直定义、角平分线定义和对顶角性质、邻补角性质,关键是理清图中角之间的关系.20、,.【分析】原式前部分先约分再和后一部分通分,求出最简式,再代值计算.【详解】原式=当x=.原式=.【点睛】此题考查分式的混合运算,二次根式的化简求值,解题关键在于掌握运算法则.21、(1)Q=30﹣5t(0≤t≤6);(2)10L【分析】(1)根据“油箱中的余油量=油箱中原有油量-消耗的油量”,即可列出函数解析式和自变量的取值范围;(2)把t=4代入函数解析式,即可得到答案.【详解】(1)由题意可得,油箱中的余油量Q(L)与工作时间t(h)之间的函数关系是:Q=30﹣5t(0≤t≤6);(2)把t=4代入,得Q=30﹣5t=30-5×4=10,答:当拖拉机工作4h时,油箱内还剩余油10L.【点睛】本题主要考查根据题意列函数解析式和自变量的取值范围,掌握数量关系“油箱中的余油量=油箱中原有油量-消耗的油量”,是解题的关键.22、证明见解析.【解析】如图,过E点作EH∥AB交BD的延长线于H.可证明△ABC≌△EHC(ASA),则由全等三角形的性质得到AB=HE;然后结合已知条件得到DE=HE,所以AB=HE,由等量代换证得AB=DE.【详解】证明:如图,过E点作EH∥AB交BD的延长线于H,∵EH∥AB,∴∠A=∠CEH,∠B=∠H在△ABC与△EHC中,,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180°.∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,正确添加适当辅助线构造全等三角形是解题关键.23、(1)x7-1;(2)xn+1-1;(3)236-1.【解析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(xn+xn﹣1+…+x+1)=xn+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x7﹣1;②xn+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.24、(1)B车的平均速度为米/秒;(2)不能,理由见解析;(3)A车调整后的平均速度为米/秒【分析】(1)A车走完全程所用时间秒就是B车走了路程(30-12)米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防雷设施安装维护合同三篇
- 化妆品行业保安工作总结
- 儿童游乐设施设计美工工作总结
- 林业行业美工的森林保护
- 风险防范工作总结
- 【八年级下册地理粤教版】第8章 珠江三角洲 单元测试
- 本科生毕业论文答辩记录表
- 2025届扬州市高三语文(上)1月质量调研试卷及答案解析
- 创新成果知识产权合同(2篇)
- DB33T 2188.4-2019 大型赛会志愿服务岗位规范 第4部分:礼宾接待志愿服务
- 养老服务中心装饰装修工程施工方案
- 落地式脚手架监理实施细则
- 上海市金山区2022-2023学年中考一模英语试题含答案
- 节水灌溉供水工程初步设计报告
- 【期末试题】河西区2018-2019学年度第一学期六年级数学期末试题
- 2022年总经理年会发言稿致辞二
- 警综平台运行管理制度
- 立法学完整版教学课件全套ppt教程
- 简约中国风水墨山水工作总结通用PPT模板
- 矿山测量课程设计
- 药厂生产车间现场管理-PPT课件
评论
0/150
提交评论