版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)不等式x+1≥2x﹣1的解集在数轴上表示为()A. B. C. D.2、(4分)下列方程是关于x的一元二次方程的是A. B.C. D.3、(4分)如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为,则乘电梯从点到点上升的高度是()A. B. C. D.4、(4分)当x=2时,函数y=-x2+1的值是()A.-2 B.-1 C.2 D.35、(4分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,6、(4分)鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的()A.众数B.中位数C.平均数D.方差7、(4分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.118、(4分)如图所示的数字图形中是中心对称图形的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.10、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.11、(4分)在直角三角形中,若勾为1,股为1.则弦为________.12、(4分)在函数中,自变量x的取值范围是__________________.13、(4分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.15、(8分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.时间段(h/周)小明抽样人数小华抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?_____.估计该校全体八年级学生平均每周上网时间为_____h;(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?16、(8分)如图所示,平行四边形中,和的平分线交于边上一点,(1)求的度数.(2)若,则平行四边形的周长是多少?17、(10分)按要求解不等式(组)(1)求不等式的非负整数解.(2)解不等式组,并把它的解集在数轴上表示出来.18、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.20、(4分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为__.21、(4分)函数是y关于x的正比例函数,则______.22、(4分)若是方程的一个根,则的值为____________.23、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.二、解答题(本大题共3个小题,共30分)24、(8分)求不等式组的解集,并把解集在数轴上表示出来.25、(10分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.26、(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求一次函数y=kx+b的解析式;(2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
先求出不等式的解集,再根据不等式解集的表示方法,可得答案.【详解】移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:.故选B.本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、D【解析】
根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是1;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A.ax1+bx+c=0,当a=0时,不是一元二次方程,故A错误;B.+=1,不是整式方程,故B错误;C.x1+1x=x1﹣1,是一元一次方程,故C错误;D.3(x+1)1=1(x+1),是一元二次方程,故D正确.故选D.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.3、C【解析】
过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.【详解】解:过C作CM⊥AB于M,
∵∠ABC=150°,
∴∠CBM=180°-150°=30°,
在Rt△CBM中,
∵BC=10m,∠CBM=30°,
∴=sin∠CBM=sin30°=,
∴CM=BC=5m,
即从点B到点C上升的高度h是5m.
故选C.本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.4、B【解析】
把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=−×22+1=−1.故选:B.本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.5、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算6、A【解析】
众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多;如果我是鞋店老板,我会对众数感兴趣,因为这种尺码的鞋子需求量最大,销售量最多,据此即可找到答案.【详解】解:根据题干分析可得:众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多,因为这种尺码的鞋子需求量最大,销售量最多.故选A.此题主要考查了中位数、众数、平均数、方差的意义;也考查了学生分析判断和预测的能力.7、C【解析】
首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.8、C【解析】
根据中心对称图形的概念解答即可.【详解】A.是中心对称图形,B.是中心对称图形,C.是中心对称图形,D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.综上所述:是中心对称图形的有3个,故选C.本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据新定义列出不等式即可求解.【详解】依题意得-3x+5≤11解得故答案为:.此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.10、7.2【解析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.11、【解析】
根据勾股定理计算即可.【详解】解:由勾股定理得,弦=,故答案为:.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.12、x≥0且x≠1【解析】
根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x≥0且x﹣1≠0,解得x≥0且x≠1,故答案为:x≥0且x≠1.本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.13、7【解析】
根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.【详解】∵矩形ABCD中,G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG=,∴EF=,∵FH垂直平分BE,∴BF=EF,∴4+2x=,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.此题考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,解题关键在于综合运用勾股定理、全等三角形的性质解答即可.三、解答题(本大题共5个小题,共48分)14、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.∴∠ADB=90°.∴平行四边形AEBD是矩形.(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.15、小华1.20~1【解析】试题分析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性,所以估计该校全体八年级学生平均每周上网时间为1.2小时;
(2)根据中位数的概念找出第20和第21名同学所在的上网时间段即可;
(3)先求出随机调查的40名学生中应当减少上网时间的学生的频率,再乘以320求出学生人数即可.试题解析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性.故答案为小华;1.2.(2)由图表可知第20和第21名同学所在的上网时间段为:0∼1h/周,所以中位数为:0∼1h/周.故答案为0∼1.(3)随机调查的40名学生中应当减少上网时间的学生的频率为:故该校全体八年级学生中应当减少上网时间的人数为:320×0.2=64(人).答:该校全体八年级学生中应当减少上网时间的人数为64人.16、(1);(2)平行四边形的周长是.【解析】
(1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;(2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.【详解】解:(1)∵四边形是平行四边形又∵平分和.∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;(2)在中,.又,同理:∵平行四边形中,,∴平行四边形的周长是.本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.17、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析【解析】
(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)5(2x+1)≤3(3x-2)+15,10x+5≤9x-6+15,10x-9x≤-6+15-5,x≤4,则不等式的非负整数解为1、2、3、4;(2)解不等式2(x-3)<4x,得:x>-3,解不等式,得:x≤1,则不等式组的解集为-3<x≤1,将不等式组的解集表示在数轴上如下:考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18、(1)详见解析;(2)详见解析;(3)【解析】
(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x+(2x)=3,解得x=,所以BC=,AB=BC=,然后在Rt△ABD中利用勾股定理计算AD的长.【详解】(1)证明:∵∠ACB=90°,AC=BC,∴△ACB为等腰直角三角形,∴∠CAF=∠ACG=45°,∵CG平分∠ACB,∴∠BCG=45°,在△BCG和△CFA中,∴△BCG≌△CFA,∴BG=CF;(2)证明:连结AG,∵CG为等腰直角三角形ACB的顶角的平分线,∴CG垂直平分AB,∴BG=AG,∴∠GBA=∠GAB,∵AD⊥AB,∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,∴∠D=∠GAD,∴AG=DG,∴BG=DG,∵CG⊥AB,DA⊥AB,∴CG∥AD,∴∠DAE=∠GCE,∵E为AC边的中点,∴AE=CE,在△ADE和△CGE中,∴△ADE≌△CGE,∴DE=GE,∴DG=2DE,∴BG=2DE,∵△BCG≌△CFA,∴CF=BG,∴CF=2DE;(3)∵DE=1,∴BG=2,GE=1,即BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中,x+(2x)=3,解得x=,∴BC=,∴AB=BC=,在Rt△ABD中,∵BD=4,AB=,∴AD=.此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.【详解】解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.20、(-3,1)【解析】
直接利用已知点坐标得出原点的位置进而得出答案.【详解】解:如图所示:“兵”的坐标为:(-3,1).
故答案为(-3,1).本题考查坐标确定位置,正确得出原点位置是解题关键.21、1【解析】试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.考点:正比例函数22、1【解析】
把x=m代入方程,求出2m2﹣3m=1,再变形后代入,即可求出答案.【详解】∵m是方程2x2﹣3x﹣1=0的一个根,∴代入得:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴4m2﹣6m+2019=2(2m2﹣3m)+2019=2×1+2019=1,故答案为:1.本题考查了求代数式的值和一元二次方程的解,能求出2m2﹣3m=1是解此题的关键.23、(只写一个即可)【解析】
设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.【详解】设方程为x2+kx+4=0,由题意得k2-16=0,∴k=±4,∴一次项为(只写一个即可).故答案为:(只写一个即可).本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省漳州市十校联盟2024-2025学年高一上学期11月期中考试 数学 含解析
- 城乡给排水工程建设安全基础管理、构筑物、作业、设备管理、消防安全、隐患、事故预防技术服务报告模板
- 辽宁省鞍山市海城市某中学2024-2025学年九年级上学期开学考试数学试题(含答案)
- 文书模板-展览会合同书
- 2024年07版小学5年级上册英语第3单元寒假试卷
- 珠宝销售企业要缴哪些税费-记账实操
- 烃 单元复习-2024年高中化学讲义(选择性必修三)
- 2024年水果、坚果加工品项目资金需求报告代可行性研究报告
- 强化理论的运用原理
- 【沪科】期中模拟卷A【21-23章】
- 含碘对比剂静脉外渗护理管理实践指南
- 2023年事故序列模型介绍
- 儿童免疫性疾病课件
- 牛津译林版五年级上册英语第五单元What do they do全部教案(共5课时)
- 中图版八年级地理上册《世界气候》复习课件
- 无损检测通用作业指导书
- 2023年中考语文复习:150个文言实词-课件(共183张PPT)
- GB/T 17639-2023土工合成材料长丝纺粘针刺非织造土工布
- ICU患者失禁性皮炎的预防及护理新进展
- 中秋节来历课件
- 半导体工艺 掺杂原理与技术
评论
0/150
提交评论