版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年河南省扶沟县九年级数学第一学期开学检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,中,,,将绕点顺时针旋转得到出,与相交于点,连接,则的度数为()A. B. C. D.2、(4分)在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积,当高h为定值时,下列说法正确的是()A.S,a是变量;,h是常量B.S,a,h是变量;是常量C.a,h是变量;S是常量D.S是变量;,a,h是常量3、(4分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16crn B.14cm C.12cm D.8cm4、(4分)7的小数部分是()A.4- B.3 C.4 D.35、(4分)已知:如图,菱形ABCD对角线AC与BD相交于点O,E为BC的中点,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm6、(4分)如图,在中,,,,,则的长为()
A.6 B.8 C.9 D.107、(4分)若的平均数是5,则的平均数是()A.5 B.6 C.7 D.88、(4分)某边形的每个外角都等于与它相邻内角的,则的值为()A.7 B.8 C.10 D.9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:=_____________.10、(4分)如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.11、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.12、(4分)如图,在矩形ABCD中,已知AB=3,BC=4,则BD=________.13、(4分)解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).三、解答题(本大题共5个小题,共48分)14、(12分)如图1,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:DE=AF;(2)若AB=4,BG=3,求AF的长;(3)如图2,连接DF、CE,判断线段DF与CE的位置关系并证明.15、(8分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.16、(8分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:根据以上信息解决下列问题:(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.17、(10分)计算:.18、(10分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平行四边形ABCD中,AD2AB;CF平分BCD交AD于F,作CEAB,垂足E在边AB上,连接EF.则下列结论:①F是AD的中点;②S△EBC2S△CEF;③EFCF;④DFE3AEF.其中一定成立的是_____.(把所有正确结论的序号都填在横线上)20、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.21、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE=CF,且S四边形ABFD=20,则k=_________.22、(4分)如果一梯子底端离建筑物9m远,那么15m长的梯子可到达建筑物的高度是____m.23、(4分)在菱形中,已知,,那么__________(结果用向量,的式子表示).二、解答题(本大题共3个小题,共30分)24、(8分)阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b=5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(2+4)m,BC=5m,CD=7m,AD=4m,∠A=60°,求该块草地的面积.25、(10分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.26、(12分)佳佳商场卖某种衣服每件的成本为元,据销售人员调查发现,每月该衣服的销售量(单位:件)与销售单价(单位:元/件)之间存在如图中线段所示的规律:(1)求与之间的函数关系式,并写出的取值范围;(2)若某月该商场销售这种衣服获得利润为元,求该月这种衣服的销售单价为每件多少元?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由旋转的性质可得AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°,由等腰三角形的性质可得∠AA'C=70°=∠A'AC,即可求解.【详解】∵将△ABC绕点C顺时针旋转40°得到△A′B′C,∴△ABC≌△A′B′C∴AC=A′C,∠ACA′=40∘,∠BAC=∠B′A′C=90°,∴∠AA′C=70°=∠A′AC∴∠B′A′A=∠B′A′C−∠AA′C=20°故选C.此题考查旋转的性质,等腰三角形的性质,解题关键在于得出得∠AA'C=70°=∠A'AC.2、A【解析】
因为高h为定值,所以h是不变的量,即h是常量,所以S,a是变量,,h是常量.故选A.3、D【解析】∵平行四边形ABCD的周长为40cm,,∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,∴2(AB+BC)=40,∵BC=AB,∴BC=8cm,故选D.4、A【解析】
先对进行估算,然后确定7-的范围,从而得出其小数部分.【详解】解:∵3<<4
∴-4<-<-3
∴3<7-<4
∴7-的整数部分是3
∴7-的小数部分是7--3=4-
故选:A.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在3和4之间,题目比较典型.5、C【解析】
根据菱形的性质,各边长都相等,对角线垂直平分,可得点O是AC的中点,证明EO为三角形ABC的中位线,计算可得.【详解】解:∵四边形是菱形,∴,,∵为的中点,∴是的中位线,∴,故选:C.本题考查了菱形的性质,三角形中位线的性质,熟练掌握几何图形的性质是解题关键.6、D【解析】
由DE∥BC可得出∠ADE=∠B,结合∠ADE=∠EFC可得出∠B=∠EFC,进而可得出BD∥EF,结合DE∥BC可证出四边形BDEF为平行四边形,根据平行四边形的性质可得出DE=BF,由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质可得出BC=DE,再根据CF=BC﹣BF=DE=6,即可求出DE的长度.【详解】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=1.故选:D.本题考查了相似三角形的判定与性质、平行线的性质以及平行四边形的判定与性质,根据相似三角形的性质找出BC=DE是解题的关键.7、C【解析】
先根据平均数的概念列出关于m的方程,解之求出m的值,据此得出新数据,继而根据平均数的概念求解可得.【详解】解:根据题意,有,∴解得:,∴.故选:C.本题主要考查算术平均数,解题的关键是掌握算术平均数的概念进行解题.8、C【解析】
设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】设内角为x,则相邻的外角为x,由题意得,x+x=180°,解得,x=144°,360°÷36°=10故选:C.本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据二次根式的性质和二次根式的化简,可知==.故答案为.此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.10、1【解析】
P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,则可知S△POC=S△PCA=k=2,进而可求得△POA的面积为1.【详解】解:过P作PC⊥OA于点C,
∵P点在y=x上,
∴∠POA=15°,
∴△POA为等腰直角三角形,
则S△POC=S△PCA=k=2,
∴S△POA=S△POC+S△PCA=1,
故答案为1.本题考查反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.11、-1【解析】
一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.【详解】解:一次函数y=kx﹣1的图象经过点(﹣2,1),即当x=﹣2时,y=1,可得:1=-2k﹣1,解得:k=﹣1.则k的值为﹣1.本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.12、1【解析】
先由矩形的性质求出CD=AB=3,再根据勾股定理可直接算出BD的长度.【详解】∵四边形ABCD是菱形,∴CD=AB=3,由勾股定理可知,BD=CD2故答案为1.本题主要考查了矩形的性质,勾股定理的知识点,熟练掌握勾股定理是解答本题的关键.13、(1)x1=,x2=;(2)x1=2,x2=【解析】
(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【详解】解:(1),(2),,本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2);(3)DF⊥CE;证明见解析.【解析】
(1)先判断出∠AED=∠BFA=90°,再判断出∠BAF=∠ADE,进而利用“角角边”证明△AFB和△DEA全等,即可得出结论;(2)先求出AG,再判断出△ABF∽△AGB,得出比例式即可得出结论;(3)先判断出AD=CD,然后利用“边角边”证明△FAD和△EDC全等,得出∠ADF=∠DCE,即可得出结论.【详解】解:(1)∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠BFA=90°,∵四边形ABCD是正方形,∴AB=AD且∠BAD=∠ADC=90°,∴∠BAF+∠EAD=90°,∵∠EAD+∠ADE=90°,∴∠BAF=∠ADE,在△AFB和△DEA中,,∴△AFB≌△DEA(AAS),∴AF=DE;(2)在Rt△ABG中,AB=4,BG=3,根据勾股定理得,AG=5,∵BF⊥AG,∴∠AFB=∠ABG=90°,∵∠BAF=∠GAB,∴△ABF∽△AGB,∴,即,∴AF=;(3)DF⊥CE,理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,∴∠FAD=∠EDC,∵△AFB≌△DEA,∴AF=DE,又∵四边形ABCD是正方形,∴AD=CD,在△FAD和△EDC中,,∴△FAD≌△EDC(SAS),∴∠ADF=∠DCE,∵∠ADF+∠CDF=∠ADC=90°,∴∠DCE+∠CDF=90°,∴DF⊥CE.本题是四边形综合题,涉及了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相关的性质与定理是解本题的关键.15、(1)200;(2)作图略;(3)108°;(4)1.【解析】试题分析:根据其他的人数和比例得出总人数;根据总人数和比例求出古筝和琵琶的人数;根据二胡的人数和总人数的比例得出圆心角的度数;根据总人数和喜欢古筝的比例得出人数.试题解析:(1)20÷10%=200(名)答:一共调查了200名学生;(2)最喜欢古筝的人数:200×25%=50(名),最喜欢琵琶的人数:200×20%=40(名);补全条形图如图;(3)二胡部分所对应的圆心角的度数为:60200(4)1500×30200答:1500名学生中估计最喜欢古琴的学生人数为1.考点:统计图.16、(1)50;17;(2)补全条形图见详解;144°.【解析】
(1)根据条形统计图读书4册的人数为4人,扇形图中占比8%,即可求得总人数;再根据读书2册人数占比34%,即可求得读书2册的人数;(2)根据条形图中数据以及(1)中所求,可容易求得读书3册的人数,读书3册的人数除以总人数即为扇形图中所占百分比,再乘以360°,即为读书3册所对应扇形的圆心角度数.【详解】解:(1)根据条形统计图及扇形统计图知:本次问卷调查的学生共有人,读书2册的学生有人.(2)根据条形统计图知:读书3册的学生有人,补全如图:读书3册的学生人数占比.∴扇形统计图中读书3册所对应扇形的圆心角度数为:.本题考查直方图,难度一般,是中考的常考知识点,熟练掌握扇形图、条形图的相关知识有顺利解题的关键.17、3.【解析】
根据二次根式的性质化简计算可得.【详解】解:原式.本题主要考查二次根式的加减,解题的关键是掌握二次根式的性质.18、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;
(3)菱形的四条边相等,则菱形的周长=4AQ,面积=CQ×AB.【详解】解:(1)由已知可得,BQ=DP=t,AP=CQ=6-t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6-t,得t=3
故当t=3s时,四边形ABQP为矩形.
(2)AD∥BC,AP=CQ=6-t,∴四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即=6−t时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:CQ•AB=×3=.本题考查菱形、矩形的判定与性质.注意结合方程的思想解题.一、填空题(本大题共5个小题,每小题4分,共20分)19、①③④.【解析】
由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DFC=∠BCF,∵CF平分∠BCD,∴∠BCF=∠DCF,∴∠DFC=∠DCF,∴CD=DF,∵AD=2AB,
∴AD=2CD,∴AF=FD=CD,即F为AD的中点,故①正确;延长EF,交CD延长线于M,如图,
∵四边形ABCD是平行四边形,
∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,又∵∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠ECD=∠AEC=90°,∵FM=EF,∴FC=FM,故③正确;∵FM=EF,∴S△EFC∵MC>BE,∴S△BEC<2S设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故④正确;综上可知正确的结论为①③④.
故答案为①③④.本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强.解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.20、【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.【详解】解:如图,连接BF∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.21、【解析】
由题意可设E点坐标为(,4),则有AE=,根据AE=CF,可得CF=,再根据四边形ABCD是菱形,BC=k,可得CD=6CF,再根据S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,从而可得S菱形ABCD=24,根据S菱形ABCD=BC•AO,即可求得k的值.【详解】由题意可设E点坐标为(,4),则有AE=,∵AE=CF,∴CF=,∵四边形ABCD是菱形,BC=k,∴CD=BC=k,∴CD=6CF,∴S菱形ABCD=12S△BCF,∵S菱形ABCD=S四边形ABFD+S△BCF,S四边形ABFD=20,∴S菱形ABCD=,∵S菱形ABCD=BC•AO,∴4k=,∴k=,故答案为.本题考查了菱形的性质、菱形的面积,由已知推得S菱形ABCD=6S△BCF是解题的关键.22、12【解析】∵直角三角形的斜边长为15m,一直角边长为9m,
∴另一直角边长=,故梯子可到达建筑物的高度是12m.故答案是:12m.23、【解析】
根据菱形的性质可知,,然后利用即可得出答案.【详解】∵四边形是菱形,∴,∵,,∴∴故答案为:.本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)(1)(11+14+5)m1【解析】
(1)由已知△ABC的三边a=4,b=5,c=7,可知这是一个一般的三角形,故选用海伦-奏九韶公式求解即可;(1)过点D作DE⊥AB,垂足为E,连接BD.将所求四边形的面积转化为三个三角形的面积的和进行计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀少版八年级生物上册第四章微生物在生物圈中的作用课件
- 变量与函数教案
- 《轮轴的秘密》教学设计
- 《莫高窟》教案中涉及的网络资源
- 港口码头施工合同样本
- 医疗设备采购招投标管理台账
- 个性化软件售后服务承诺书
- 水上娱乐设施防水维护合同
- 区块链会所租赁合同模板
- 旅游景区设施增补协议
- 测风方法步骤
- 主要建筑材料构配件及设备试验检验和功能性检测计划
- 2023年云南黄金矿业集团股份有限公司招聘笔试题库及答案解析
- 原发免疫性血小板减少症课件
- 经销商文件-phadia250项目建议书-ver
- 2022版义务教育(数学)课程标准(含2022年新增和修订部分)
- 2022版义务教育(劳动)课程标准(含2022年修订部分)
- 电动葫芦出厂检验报告
- 找次品-华应龙老师课件
- 全国英语教师素养大赛大赛一等奖乌鸦喝水Unit-5-Story-Time课件
- 风电工程项目质量控制管理
评论
0/150
提交评论