版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年安徽省中考数学试卷
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,。四个选项,其
中只有一个是符合题目要求的.
1.-9的绝对值是()
A.9B.—9C.—D.-----
99
2.《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万
用科学记数法表示为()
A.89.9X106B.8.99X107C.8.99X108D.0.899X109
3.计算无2.(_幻3的结果是()
A.X6B.c.X5D.-x5
4.几何体的三视图如图所示,这个几何体是()
。图
AB°
5,两个直角三角板如图摆放,其中==NE=45。,ZC=30°,AB与DF交于点M.若
BC//EF,则的大小为()
FdE
BDC
A.60°B.67.5°C.75°D.82.5°
6.某品牌鞋子的长度ycm与鞋子的“码”数尤之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的
长度为27cm,则38码鞋子的长度为()
A.23cmB.24cmC.25cmD.26cm
41
7.设a,b,c为互不相等的实数,且。则下列结论正确的是()
A.a>b>cB.c>b>aC.a-b=4(Z?-c)D.a-c=5(tz-Z?)
8.如图,在菱形ABC。中,AB=2,NA=120°,过菱形ABC。的对称中心。分别作边AB,BC的垂线,交各边
于点E,F,G,H,则四边形EFGH的周长为()
A.3+73B.2+273C.2+73D.1+2A/3
9.如图在三条横线和三条竖线组成图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一
个,则所选矩形含点A的概率是()
14
A.cD.-
43-19
10.在ABC中,ZACB=90°,分别过点5C作N54C平分线的垂线,垂足分别为点。E,BC的中点是M
连接CD,MD,ME.则下列结论错误的是(
A.CD=2MEB.ME!/ABC.BD=CDD.ME=MD
二、填空题(本大题共4小题,每小题5分,满分20分)
11.计算:/+(—1)°=
12.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等
等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是J?-l,它介于整数“和〃+1之间,则〃的
值是.
13.如图,圆。的半径为1,ABC内接于圆。.若NA=60°,ZB=75°,贝UAB=.
14.设抛物线、=%2+(。+1)》+4,其中。实数.
(1)若抛物线经过点(—1,加),则加=;
(2)将抛物线y^x2+(a+l)x+a向上平移2个单位,所得抛物线顶点的纵坐标的最大值是.
三、(本大题共2小题,每小题8分,满分16分)
15.解不等式:--1>0.
3
16.如图,在每个小正方形的边长为1个单位的网格中,A6c的顶点均在格点(网格线的交点)上.
(1)将ABC向右平移5个单位得到△A4G,画出E居G;
(2)将(1)中的△44G绕点ci逆时针旋转90。得到画出.
四、(本大题共2小题,每小题8分,满分16分)
17.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEED
为矩形,点3、C分别在ER。尸上,ZABC=90°,440=53°,AB=10cm,3C=6aw.求零件的截面面
积,参考数据:sm53°®0.80,8s53"0.60.
18.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖
排列方式,其中正方形地砖为连续排列.
[观察思考]
当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有
8块(如图3);以此类推,
•…^KXE
B1匿]2图3
[规律总结]
(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;
(2)若一条这样的人行道一共有w(〃为正整数)块正方形地砖,则等腰直角三角形地砖的块数为一(用含w的代
数式表示).
[问题解决]
(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要
正方形地砖多少块?
五、(本大题共2小题,每小题10分,满分20分)
19.已知正比例函数丁=近/力0)与反比例函数y=9的图象都经过点A(见2).
x
(1)求左根的值;
(2)在图中画出正比例函数丫=履的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
20.如图,圆。中两条互相垂直的弦AB,CD交于点E.
(1)M是C。的中点,OM=3,CD=12,求圆。的半径长;
(2)点F在CD上,且CE=EF,求证:AF±BD-
六、(本题满分12分)
21.为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kWh)调查,按月
用电量50~100,100-150,150-200,200-250,250~300,300~350进行分组,绘制频数分布直方图如下:
(1)求频数分布直方图中X的值;
(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
(3)设各组居民用户月平均用电量如表:
组别50〜100100—150150—200200〜250250〜300300〜350
月平均用电量(单位:kW-h)75125175225275325
根据上述信息,估计该市居民用户月用电量平均数.
七、(本题满分12分)
22.已知抛物线y=2x+l(aw0)对称轴为直线x=l.
(1)求。的值;
(2)若点MUi,yi),N(也”)都在此抛物线上,且1<%<2.比较》与”的大小,并说明理由;
(3)设直线y="(根>0)与抛物线丁=。f—2x+l交于点A、B,与抛物线y=3(x—交于点C,D,求线段
与线段CD的长度之比.
八、(本题满分14分)
23.如图1,在四边形A8CD中,NABC=/BCD,点E在边BC上,且AE//CD,QE//AB,作CF//AD交
线段AE于点尸,连接8斤.
(1)求证:AABF^AEAD;
(2)如图2,若AB=9,CD=5,ZECF=ZAED,求BE的长;
(3)如图3,若8月的延长线经过A。的中点求些BF的值.
EC
2021年安徽省中考数学试卷
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,。四个选项,其
中只有一个是符合题目要求的.
1.-9的绝对值是()
A.9B.—9C.—D.
99
【答案】A
【分析】利用绝对值的定义直接得出结果即可
【详解】解:-9的绝对值是:9
故选:A
【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点
2,《2020年国民经济和社会发展统计公报》显示,2020年我国共资助8990万人参加基本医疗保险.其中8990万
用科学记数法表示为()
A.89.9X106B.8.99X107C.8.99X108D.0.899X109
【答案】B
【分析】将8990万还原为89900000后,直接利用科学记数法的定义即可求解.
【详解】解:8990万=89900000=8.99x107,
故选B.
【点睛】本题考查了科学记数法的定义及其应用,解决本题的关键是牢记其概念和公式,本题易错点是含有单位"万",
学生在转化时容易出现错误.
3.计算_?.(_彳)3的结果是()
A.x6B.-%6C.x5D.-x5
【答案】D
【分析】利用同底数鬲的乘法法则计算即可
【详解】解:炉.(—)3=_铲3=—/
故选:D
【点睛】本题考查同底数骞的乘法法则,正确使用同底数骞相乘,底数不变,指数相加是关键
4.几何体的三视图如图所示,这个几何体是()
【答案】C
【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可.
【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,
故选:C.
【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键.
5.两个直角三角板如图摆放,其中==ZE=45°,ZC=30°,AB与DF交于点M.若
BC//EF,则NBMD的大小为()
BDC
A.60°B.67.5°c.75°D.82.5°
【答案】c
【分析】根据BC//跖,可得NEDfi=NP=45°,再根据三角形内角和即可得出答案.
【详解】由图可得4=60°,ZF=45°,
1/BCHEF.
NFDB=NF=45。,
:.ZBMD=180°-ZFDB—NB=180。—45。—60°=75°,
故选:C.
【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.
6.某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的
长度为27cm,则38码鞋子的长度为()
A.23cmB.24cmC.25cmD.26cm
【答案】B
【分析】l^y=kx+b,分别将(22,16)和(44,27)代入求出一次函数解析式,把%=38代入即可求解.
详解】解:设V=H+6,分别将(22,16设口(44,27)代入可得:
16=22左+沙
[27=44左+人’
k=-
解得彳2,
b=5
••y=—x+5,
2
当x=38时,y=|x38+5=24cm,
故选:B.
【点睛】本题考查一次函数的应用,掌握用待定系数法求解析式是解题的关键.
41
7.设a,b,c为互不相等的实数,且/则下列结论正确的是()
A.a>b>cB.c>b>aC.a-Z?=4(Z?-c)D.a-c=5(a-b)
【答案】D
【分析】举反例可判断A和B,将式子整理可判断C和D.
41
【详解】解:A.当。=5,c=10,6时,c>b>a,故A错误;
41
B.当〃=10,c=5,b=《a+yC=9时,a>b>c,故B错误;
i4
C.4一6=4(6—。)整理可得/?=《〃一W0,故C错误;
41
D.〃—c=5(〃—b)整理可得5=1〃+二。,故D正确;
故选:D.
【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.
8.如图,在菱形A3C。中,AB=2,NA=120。,过菱形ABC。的对称中心。分别作边AB,8C的垂线,交各边
于点E,F,G,H,则四边形MG”的周长为()
A.3+6B.2+26C.2+73D.1+2百
【答案】A
【分析】依次求出。E=OF=OG=。",利用勾股定理得出EF和。E的长,即可求出该四边形的周长.
【详解】HF±BC,EG±AB,
ZBEO=NBFO=90°,
,,,Z71=120",
ZB=60°,
ZEOF=120°,Z£OH=60",
由菱形的对边平行,得HF_L/W,EG_LCD,
因为。点是菱形ABCD的对称中心,
。点到各边的距离相等,即OE=OF=OG=OH,
:.ZOEF=NOFE=30°,ZOEH=NOHE=60°,
/.ZHEF=NEFG=ZFGH=ZEHG=90°,
所以四边形EFGH是矩形;
设OE=OF=OG=OH=x,
EG=HF=2x,EF=HG=J(2X)2-X2=y/3x,
如图,连接AC,则AC经过点O,
可得三角形ABC是等边三角形,
ZBAC=60°,AC=AB=2,
:.OA=1,AAOE=30°,
x=OE=
A/3V3
故选A.
【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等
内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生
的综合分析与应用的能力.
9.如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一
个,则所选矩形含点A的概率是()
【答案】D
【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A
矩形个数,进而利用概率公式求出即可.
【详解】解:两条横线和两条竖线都可以组成一个矩形,
则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,
4
,所选矩形含点A的概率是一
9
故选:D
【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
10.在ABC中,ZACB=90。,分别过点5C作N&4c平分线的垂线,垂足分别为点。E,BC的中点是M
连接CD,MD,ME.则下列结论错误的是()
A.CD=2MEB.ME//ABC.BD=CDD.ME=MD
【答案】A
【分析】设AD.BC交于点H,作族,A3于点F,连接EF.延长AC与BD并交于点G.由题意易证
CAE=_FAE(SAS),从而证明ME为7CBF中位线,即MEHAB,故判断B正确;又易证
AGD=.ABD(ASA),从而证明。为8G中点.即利用直角三角形斜边中线等于斜边一半即可求出CD=BD,
故判断C正确;由ZHDM+ZDHM=90°、ZHCE+ZCHE=90°和ZDHM=ACHE可证明
ZHDM=ZHCE.再由ZHEM+ZEHF=90°、ZEHC=ZEHF和ZEHC+ZHCE=90°可推出
ZHCE=ZHEM,即推出=,即="石,故判断D正确;假设CD=2VE,可推出
CD=2MD,即可推出"CM=30°.由于无法确定"CM的大小,故CE>=2ME不一定成立,故可判断A
错误.
【详解】如图,设A。、交于点",作族,AB于点E连接延长AC与8。并交于点G.
是NBAC的平分线,HF1AB.HCA.AC,
:.HC=HF,
:.AF=AC.
AF=AC
...在VOLE和二E4E中,<NCAE=ZFAE,
AE=AE
:.^CAE=^FAE(SAS),
:.CE=FE,ZAEC=ZAEF=90°,
:.C,E、歹三点共线,
...点E为CT中点.
为8C中点,
:.ME为YCBF中位线,
:.MEIIAB,故B正确,不符合题意;
ZGAD=NBAD
:在△AGO和△ABD中,|AD=AD,
ZADG=ZADB=9Q°
:.^AGD=^ABD(ASA),
:.GD=BD=-BG,即。为BG中点.
2
:在BCG中,ZBCG=90°,
CD=-BG,
2
CD=BD,故C正确,不符合题意;
•1,ZHDM+ZDHM=90°,ZHCE+ZCHE=90°,ZDHM=ACHE,
ZHDM=ZHCE.
,;HFLAB,ME/1AB,
:.HFLME.
:.ZHEM+ZEHF=900.
:A。是41c的平分线,
ZEHC=ZEHF.
•/ZEHC+ZHCE=90°,
:.ZHCE=ZHEM,
•••ZHDM=ZHEM.
:•MD=ME,故D正确,不符合题意;
...假设GD=2ME,
CD=2MD,
.,.在RrCOW中,ZDCM=300.
•••无法确定ND。1的大小,故原假设不一定成立,故A错误,符合题意.
故选A.
【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以
及含30。角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.
二、填空题(本大题共4小题,每小题5分,满分20分)
11.计算:74+(-1)°=.
【答案】3
【分析】先算算术平方根以及零指数募,再算加法,即可.
【详解】解:74+(-1)°=2+1=3,
故答案为3.
【点睛】本题主要考查实数的混合运算,掌握算术平方根以及零指数骞是解题的关键.
12.埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与
侧面等腰三角形底边上的高的比值是逐—1,它介于整数〃和"+1之间,贝〃的值是.
【答案】1
【分析】先估算出拈,再估算出逃-1即可完成求解.
【详解】解「:小x2.236;
^-1^1.236;
因1.236介于整数1和2之间,
所以〃=1;
故答案:1.
【点睛】本题考查了对算术平方根取值的估算,要求学生牢记后的近似值或者能正确估算出75的整数部分即可;
该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.
13.如图,圆。的半径为1,ABC内接于圆。.若NA=60°,ZB=75°,贝UAB=.
【答案】V2
【分析】先根据圆的半径相等及圆周角定理得出NA8O=45。,再根据垂径定理构造直角三角形,利用锐角三角函
数解直角三角形即可
【详解】解:连接OB、0C、作0D1AB
•:ZA=60°
:.ZBOC=2ZA=nQ°
':OB=OC
:.ZOBC=30°又4=75°
,ZABO=45°
在放△08。中,OB=1
:.BD==—
2
•:OD±AB
:.BD=AD-
2
:.AB=y[2
故答案为:桓
【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键
14.设抛物线y=x2+(a+l)x+a,其中。为实数.
(1)若抛物线经过点(―1,根),贝;
(2)将抛物线y=必+(。+1"+。向上平移2个单位,所得抛物线顶点的纵坐标的最大值是
【答案】①.0②.2
【分析】(1)直接将点(-1,根)代入计算即可
(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值
【详解】解:(1)将(一1,根)代入y=/+(。+1)%+。得:
m=l—a—l+a=0
故答案为:0
(2)根据题意可得新的函数解析式为:y^x2+(a+l)x+a+2
'b4-cic-、
由抛物线顶点坐标-丁一
、2a4-aJ
得新抛物线顶点的纵坐标为:
4(a+2)-(a+l。
4
—a"+2a+7
一4
一(a1—2a+1)+8
-4
-(g-l)2+8
一4
:("1)220
二当o=l时,一(a—+8有最大值为8,
Q
所得抛物线顶点的纵坐标的最大值是2=2
4
故答案为:2
【点睛】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法
三、(本大题共2小题,每小题8分,满分16分)
15.解不等式:--1>0.
3
【答案】x>4
【分析】利用去分母、去括号、移项、合并同类项、系数化为1即可解答.
【详解】3-1>0,
3
(x-l)-3>0,
%—1—3>0,
x>l+3,
x>4.
【点睛】本题考查了一元一次不等式的解法,熟练运用一元一次不等式的解法是解决问题的关键.
16.如图,在每个小正方形的边长为1个单位的网格中,A6C的顶点均在格点(网格线的交点)上.
(1)将ABC向右平移5个单位得到△A4G,画出△A4G;
(2)将(1)中的△人耳弓绕点c逆时针旋转90。得到△A^G,画出△&与6.
【答案】(1)作图见解析;(2)作图见解析.
【分析】(1)利用点平移的规律找出4、耳、c「然后描点即可;
(2)利用网格特点和旋转的性质画出点4,当即可.
【详解】解:(1)如下图所示,△A4G为所求;
(2)如下图所示,为所求;
【点睛】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键.
四、(本大题共2小题,每小题8分,满分16分)
17.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点8、C
分别在所、。尸上,/ABC=90°,440=53°,AB=XQcm,BC=6a,.求零件的截面面积.参考数据:
sin53°p0.80,cos53°«0.60.
D
【答案】53.76cm2
【分析】首先证明NEBA=NBCF=53°,通过解及△ABE和处BCF,求出AE,BE,CF,BF,再根据
V
。四边形ABCDS矩形AEFD—^AABE-S^BCF计具求解即可•
【详解】解:如图,
四边形AEFD为矩形,ZBAD=53°.
:.EF//AB,ZEFD=90°
:.NEBA=53。
•:/ABC=90。,
ZEBA+ZFBC=90°,
■:ZEFD=90°
:.ZFBC+ZBCF=90°
.\ZEBA=ZBCF=53°
在以中,AB=10cm.
477
sin530=——-0.8
AB
AE=AB-sin53°=8(cm)
BE
又cos53。=——-0.6
AB
BE=AB-cos53°=6(cm)
24ig
同理可得BF=BC-sin53。=歹(cm),CF=BCcos53°=y(cm)
=q
一2四边形ABC。一。矩形AEFDCF
=8X(6H----)——x8x6——x—x—
52255
=53,76(cm2)
答:零件的截面面积为53.76cm2
【点睛】此题主要考查了解直角三角形,通过解处ZXABE和RfBCF,求出AE,BE,CF,B尸的长是解答此题
的关键.
18.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖
排列方式,其中正方形地砖为连续排列.
[观察思考]
当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有
8块(如图3);以此类推,
gl图2图3
[规律总结]
(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;
(2)若一条这样的人行道一共有〃(“为正整数)块正方形地砖,则等腰直角三角形地砖的块数为一(用含〃的代
数式表示).
[问题解决]
(3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要
正方形地砖多少块?
【答案】⑴2;⑵2〃+4;(3)1008块
【分析】(1)由图观察即可;
(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,
等腰直角三角形地砖有6块,递推即可;
(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.
【详解】解:(1
)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;
故答案为:2;
(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖;
当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;
所以当地砖有w块时,等腰直角三角形地砖有(2〃+4)块;
故答案为:2〃+4;
(3)令2〃+4=2021贝叱=1008.5
当〃=1008时,2〃+4=2020
此时,剩下一块等腰直角三角形地砖
需要正方形地砖1008块.
【点睛】本题为图形规律题,涉及到了一元一次方程、列代数式以及代数式的应用等,考查了学生的观察、发现、
归纳以及应用的能力,解题的关键是发现规律,并能列代数式表示其中的规律等.
五、(本大题共2小题,每小题10分,满分20分)
19.已知正比例函数丁=依/#0)与反比例函数y=£的图象都经过点A(见2).
x
(1)求匕机的值;
(2)在图中画出正比例函数丫=履的图象,并根据图象,写出正比例函数值大于反比例函数值时x的取值范围.
2
【答案】(1)匕加的值分别是一和3;(2)—3<*<0或%>3
3
【分析】(1)把点A(加,2)代入y=@求得机的值,从而得点A的坐标,再代入丁=丘(女工0)求得左值即可;
X
(2)在坐标系中画出、=履的图象,根据正比例函数丁=依(4工0)的图象与反比例函数丁=£图象的两个交点坐
标关于原点对称,求得另一个交点的坐标,观察图象即可解答.
【详解】⑴将A(%2)代入y=e得2=9,
xm
:.m=3,
"(3,2),
将A(3,2)代入y=履得2=3%,
:.k=-,
3
2
加的值分别是一和3.
3
..•正比例函数y=Ax(Z#O)与反比例函数y=9的图象都经过点A(3,2),
X
...正比例函数丁=依(左20)与反比例函数y=g的图象的另一个交点坐标为(-3,-2),
x
由图可知:正比例函数值大于反比例函数值时x的取值范围为-3<x<0或x>3.
【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键.
20.如图,圆。中两条互相垂直的弦AB,CD交于点E.
(1)M是8的中点,OM=3,CD=12,求圆。的半径长;
(2)点F在CD上,且CE=EF,求证:AF±BD-
【答案】(1)375;(2)见解析.
【分析】(1)根据/W是CD的中点,O/W与圆。直径共线可得QW_LCD,3/平分CD,贝(]有MC=6,利用勾股
定理可求得半径的长;
(2)连接AC,延长AE交2。于G,根据CE=瓦,AE±FC,可得”=AC,Z1=Z2,利用圆周角定理
可得N2=ND,可得Z7=ND,利用直角三角形的两锐角互余,可证得NAGZ?=90°,即有
【详解】⑴解:连接。G
,二/W是CD的中点,OM与圆。直径共线
OMYCD,平分CD,
.-.ZOMC=90°
CD=12
:.MC=6.
在中
OC=y]MC2+OM2
=375
•••圆O的半径为3指
(2)证明:连接AC,延长AF交BD于G.
CE=EF,AELFC
:.AF=AC
又CE=EF
:.N1=N2
BC=BC
:.Z2=ZD
.-.Z1=ZD
在Rt.BED中
ZD+ZB^90°
:.Z1+ZB=90°
:.ZAGB=90°
.-.AF±BD
【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点
是解题的关键.
六、(本题满分12分)
21.为了解全市居民用户用电情况,某部门从居民用户中随机抽取100户进行月用电量(单位:kW・h
)调查,按月用电量50~100,100-150,150-200,200-250,250~300,300~350进行分组,绘制频数分布直
方图如下:
(1)求频数分布直方图中x的值;
(2)判断这100户居民用户月用电量数据的中位数在哪一组(直接写出结果);
(3)设各组居民用户月平均用电量如表:
组别50-100100—150150—200200〜250250〜300300〜350
月平均用电量(单位:kW-h)75125175225275325
根据上述信息,估计该市居民用户月用电量的平均数.
【答案】⑴22;(2)150-200;(3)186kw-h
【分析】(1)利用100减去其它各组的频数即可求解;
(2)中位数是第50和51两个数平均数,第50和51两个数都位于月用电量150~200的范围内,由此即可解答;
(3)利用加权平均数的计算公式即可解答.
【详解】(1)100-(12+18+30+12+6)=22
•.x=22
(2)•..中位数是第50和51两个数的平均数,第50和51两个数都位于月用电量150~200的范围内,
,.这100户居民用户月用电量数据的中位数在月用电量150~200的范围内;
(3)设月用电量为y,
_75x12+125x18+175x30+225x22+275x12+325x6
y—
100
_900+2250+5250+4950+3300+1950
100
=186(hv-/z)
答:该市居民用户月用电量的平均数约为186Rv-/z.
【点睛】本题考查了频数分布直方图、中位数及加权平均数的知识,正确识图,熟练运用中位数及加权平均数的计
算方法是解决问题的关键.
七、(本题满分12分)
22.已知抛物线y=一2x+l(ow0)的对称轴为直线x=l.
(1)求。的值;
(2)若点M(Xi,yi),N(羯J2)都在此抛物线上,且—1<%<2.比较yi与”的大小,并说明理由;
(3)设直线y=7%。%>0)与抛物线丁=奴2一2%+1交于点A、B,与抛物线y=3(x—I)?交于点C,D,求线段
A2与线段的长度之比.
[答案】(1)a=l;(2)%>为,见解析;(3)百
b
【分析】(1)根据对称轴%=—-,代值计算即可
2a
(2)根据二次函数的增减性分析即可得出结果
(3)先根据求根公式计算出x=l土而,再表示出A3=|J/+1—(―而+1)|,CD=|%—司==2粤,即可
得出结论
详解】解:(1)由题意得:x=--=l
2a
\a-1
(2)抛物线对称轴为直线x=L且a=l>0
二当尤<1时,y随x的增大而减小,
当x>l时,y随尤的增大而增大.
.,.当时,%随Xi的增大而减小,
%=-1时,y=4,x=0时,y=l
1<%<4
同理:1<%<2时,,2随尤2的增大而增大
一%=1时,y=o.
x=2时,y=l
/.0<y2<1
(3)令龙之一2%+1=相
x2-2x+(l-m)=0
/=(—2)2-41(1—㈤
=4m
“=也近=]土而
2-1
/.石=y/m+1x2=~4m+1
/.AB=|4m-\-l-(—y/m+1)|
=2y/m
令3(x—1)2=加
,5咤
CD=-x2|
二空=率=百
CD213m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年杂志分发委托责任合同范本版B版
- 2024年度技术服务合同标的明细3篇
- 2024年土地开发居间土方合同2篇
- 二零二四年机器设备采购与技术支持协议3篇
- 2024年土地使用权抵押融资合同3篇
- 2024至2030年中国捕虾笼行业投资前景及策略咨询研究报告
- 2024工程建设监理合同
- 2024至2030年速降自锁防护装置项目投资价值分析报告
- 2024至2030年离式钢丝绳切断器项目投资价值分析报告
- 2024至2030年手术护理多用床项目投资价值分析报告
- 毕业设计(论文)-基于单片机的多点温度监测系统设计
- 《寻找消失的爸爸》(图形)
- 四新技术应用情况总结
- 离心引风机叶轮的磨损分析及措施处理
- PDCA循环在传染病管理工作中的应用
- 课程游戏化背景下的幼儿户外游戏的实践探索
- 岁运照命串宫压运星(躲星+祭星)速查表(最全版)
- (完整版)化工基础知识题库最新(精华版)
- 老师退休欢送会ppt课件
- 55T履带吊拆卸、安装方案
- 英文期刊论文模板
评论
0/150
提交评论