2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题含解析_第1页
2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题含解析_第2页
2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题含解析_第3页
2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题含解析_第4页
2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省遵义市名校八年级数学第一学期期末统考模拟试题题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或82.某班共有学生40人,其中10月份生日的学生人数为8人,则10月份生日学生的频数和频率分别为()A.10和25% B.25%和10 C.8和20% D.20%和83.下列计算正确的是()A.2a2+3a3=5a5 B.a6÷a2=a3C. D.(a﹣3)﹣2=a﹣54.已知,,则的值为()A.11 B.18 C.38 D.125.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣86.下列各组图形中,成轴对称的两个图形是()A. B. C. D.7.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6 B.18 C.28 D.508.下列以a、b、c为边的三角形中,是直角三角形的是()A.a=4,b=5,c=6 B.a=5,b=6,c=8C.a=12,b=13,c=5 D.a=1,b=1,c=9.如图,直线,∠1=40°,∠2=75°,则∠3等于()A.55° B.60° C.65° D.70°10.分式方程+=1的解是()A.x=-1 B.x=2 C.x=3 D.x=411.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.12.下列各数中,无理数是()A.﹣3 B.0.3 C. D.0二、填空题(每题4分,共24分)13.若,,且,则__________.14.等腰三角形的一个角是,则它的底角的度数是______.15.如图,在中,是的垂直平分线.若,的周长为13,则的周长为______.16.如图,在一个规格为(即个小正方形)的球台上,有两个小球.若击打小球,经过球台边的反弹后,恰好击中小球,那么小球击出时,应瞄准球台边上的点______________.17.如图,在中,,,的垂直平分线与交于点,与交于点,连接.若,则的长为____________.18.分解因式:=________.三、解答题(共78分)19.(8分)问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,,则点与点关于互为顶针点;若再满足,则点与点关于互为勾股顶针点.初步思考(1)如图2,在中,,,、为外两点,,,为等边三角形.①点与点______关于互为顶针点;②点与点______关于互为勾股顶针点,并说明理由.实践操作(2)在长方形中,,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点是直线上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点.在点运动过程中,线段与线段的长度是否会相等?若相等,请直接写出的长;若不相等,请说明理由.20.(8分)计算:(1);(2)(-2)×-6;(3);(4).21.(8分)因式分解:(1).(2).22.(10分)解不等式组:,并利用数轴确定不等式组的解集.23.(10分)某茶叶经销商以每千克元的价格购进一批宁波白茶鲜茶叶加工后出售,已知加工过程中质量损耗了,该商户对该茶叶试销期间,销售单价不低于成本单价,且每千克获利不得高于成本单价的,经试销发现,每天的销售量(千克)与销售单价(元/千克)符合一次函数,且时,;时,.(1)求一次函数的表达式.(2)若该商户每天获得利润为元,试求出销售单价的值.24.(10分)八年级学生去距离学校10千米的素质教育基地参加实践活动,上午8点40分一部分学生骑自行车先走;9点整,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.25.(12分)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?26.(1)已知3x=2y=5z≠0,求的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:当底为2时,腰为3,周长=2+3+3=8;当底为3时,腰为2,周长=3+2+2=7.考点:等腰三角形的性质.2、C【分析】直接利用频数与频率的定义分析得出答案.【详解】解:∵某班共有学生40人,其中10月份生日的学生人数为8人,∴10月份生日学生的频数和频率分别为:8、=0.2.故选:C.【点睛】此题考查了频数与频率,正确掌握相关定义是解题关键.3、C【分析】逐一进行判断即可.【详解】2a2+3a3不是同类项,不能合并,故选项A错误;a6÷a2=a4,故选项B错误;()3=,故选项C正确;(a﹣3)﹣2=a6,故选项D错误;故选:C.【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方和幂的乘方,掌握同底数幂的除法,积的乘方和幂的乘方运算法则是解题的关键.4、B【分析】根据同底数幂乘法的逆运算法则,幂的乘方逆运算法则计算即可.【详解】,故选:B.【点睛】本题考查了同底数幂的乘法逆运算法则,幂的乘方逆运算法则,熟记幂的运算法则是解题的关键.5、D【分析】直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【详解】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴OA·(OB+OC)=12,即×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.【点睛】本题考查了一次函数的应用,正确理解题意,能够画出简图是解题的关键.6、D【解析】试题分析:根据轴对称图形的概念求解.解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.考点:轴对称图形.7、B【分析】先提取公因式ab,再利用完全平方公式因式分解,最后代入已知等式即可得答案.【详解】a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2∵a+b=3,ab=2,∴原式=2×33=18,故选B.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8、C【分析】根据直角三角形的判定,符合a2+b2=c2即可.【详解】解:A、因为42+52=41≠62,所以以a、b、c为边的三角形不是直角三角形;B、因为52+62≠82,所以以a、b、c为边的三角形不是直角三角形;C、因为122+52=132,所以以a、b、c为边的三角形是直角三角形;D、因为12+12≠()2,所以以a、b、c为边的三角形不是直角三角形;故选:C.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、C【解析】试题分析:如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C.考点:1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质10、D【分析】根据分式方程的计算方法先将方程转化为一元一次方程,然后进行计算即可得解.【详解】解:原式化简得即,解得,经检验,当时,原分式方程有意义,故原分式方程的解是,故选:D.【点睛】本题主要考查了分式方程的解,熟练掌握去分母,去括号等相关计算方法是解决本题的关键.11、A【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.12、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,逐一判断即可得答案.【详解】A.﹣3是整数,属于有理数,故该选项不符合题意,B.0.3是有限小数,属于有理数,故该选项不符合题意,C.是无理数,故该选项符合题意,D.0是整数,属于有理数,故该选项不符合题意.故选:C.【点睛】此题主要考查了无理数的定义,无限不循环小数为无理数.如π、8080080008…(每两个8之间依次多1个0)等形式,注意带根号的要开不尽方才是无理数.二、填空题(每题4分,共24分)13、1【分析】根据=3m+9n求出m-n=3,再根据完全平方公式即可求解.【详解】∵=3m+9n=3(m+3n)又∴m-n=3∴(m-n)2+2mn=9+10=1故答案为:1.【点睛】此题主要考查因式分解的应用,解题的关键是因式分解的方法及完全平方公式的应用.14、50°或80°【分析】分这个角为底角或顶角两种情况讨论求解即可.【详解】解:根据题意,一个等腰三角形的一个角等于,

①当角为底角时,则该等腰三角形的底角的度数是,

②当角为顶角时,则该等腰三角形的底角的度数为:,故答案为:或.【点睛】本题考查了等腰三角形的性质,解题的关键是注意分类讨论思想的应用,注意别漏解.15、【分析】由线段的垂直平分线的性质可得,从而可得答案.【详解】解:是的垂直平分线.,的周长故答案为:【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.16、P1【分析】认真读题,作出点A关于P1P1所在直线的对称点A′,连接A′B与P1P1的交点即为应瞄准的点.【详解】如图,应瞄准球台边上的点P1.故答案为:P1.【点睛】本题考查了生活中的轴对称现象问题;解决本题的关键是理解击球问题属于求最短路线问题.17、1【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠BDC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【详解】解:∵DE是AB的垂直平分线,

∴AD=BD=12cm,

∴∠A=∠ABD=15°,

∴∠BDC=∠A+∠ABD=15°+15°=30°,

∴在Rt△BCD中,BC=BD=×12=1.

故答案为1.【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质.18、【分析】根据提公因式法即可求解.【详解】=故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.三、解答题(共78分)19、(1)①、,②,理由见解析;(2)①作图见解析;②与可能相等,的长度分别为,,2或1.【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.

(2)①以C为圆心,CB为半径画弧交AD于F,连接CF,作∠BCF的角平分线交AB于E,点E,点F即为所求.

②分四种情形:如图①中,当时;如图②中,当时;如图③中,当时,此时点F与D重合;如图④中,当时,点F与点D重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:

①点A与点D和E关于BC互为顶针点;

②点D与点A关于BC互为勾股顶针点,理由:如图2中,∵△BDC是等边三角形,

∴∠D=60°,

∵AB=AC,∠ABC=30°,

∴∠ABC=∠ACB=30°,

∴∠BAC=120°,

∴∠A+∠D=10°,

∴点D与点A关于BC互为勾股顶针点,

故答案为:D和E,A.(2)①如图,点、即为所求(本质就是点关于的对称点为,相当于折叠).②与可能相等,情况如下:情况一:如图①,由上一问易知,,当时,设,连接,∵,∴,∴,在中,,,∴,解得,即;情况二:如图②当时,设,同法可得,则,,则,,在中,则有,解得:;情况三:如图③,当时,此时点与重合,可得;情况四:如图④,当时,此时点与重合,可得.综上所述,与可能相等,的长度分别为,,2或1.【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.20、(1)2;(2)-6;(3);(4).【分析】(1)按照二次根式的运算法则先乘后加减,计算即可;(2)按照二次根式的运算法则先去括号,然后进行减法运算即可;(3)运用代入消元法进行求解即可;(4)利用加减消元法进行求解即可.【详解】(1)原式==2-1-0+1=2(2)原式===(3)将②代入①,得解得,代入②,得∴方程组的解为(4),得③③×3,得④②×4,得⑤④-⑤,得解得,代入②,得∴方程组的解为【点睛】此题主要考查二次根式的混合运算以及二元一次方程组的求解,熟练掌握,即可解题.21、(1);(2)【分析】(1)先提公因式,再运用平方差公式;(2)先去括号,再运用完全平方公式.【详解】(1)===(2)==【点睛】考核知识点:因式分解.掌握各种因式分解基本方法是关键.22、,用数轴表示见解析.【分析】分别解两个不等式得到和,再根据大小小大中间找确定不等式组的解集,然后利用数轴表示其解集.【详解】解①得,解②得,所以不等式组的解集为.用数轴表示为:【点睛】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.23、(1).(2).【分析】(1)用待定系数法即可求得;(2)根据商户每天获得利润为元,列方程求解.【详解】解:(1)将、和、代入,得:,解得:,.(2)根据题意得:,解得:或,而,所以,.【点睛】本题考查待定系数法求函数解析式,一元二次方程的应用,比较综合,找准等量关系是关键.24、15千米/小时【分析】求速度,路程已知,根据时间来列等量关系.关键描述语为:“上午8点40分一部分学生骑自行车先走;9点整,其余学生乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间乘车同学所用时间=小时,根据等量关系列出方程.【详解】解:设骑车学生的速度为千米/小时,由题意,得.解之得:.经检验是原分式方程的解.答:骑车学生的速度为15千米/小时.【点睛】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,得到合适的等量关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论