版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省扬州市仪征市、高邮市八年级数学第一学期期末监测模拟试题测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若(x+a)(x﹣2)=x2+bx﹣6,则a、b的值是()A.a=3,b=5 B.a=3,b=1 C.a=﹣3,b=﹣1 D.a=﹣3,b=﹣52.如果一次函数的图象与直线平行且与直线y=x-2在x轴上相交,则此函数解析式为()A. B. C. D.3.下列各分式中,最简分式是()A. B. C. D.4.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. B.2 C. D.25.已知点A(m+2,﹣3),B(﹣2,n﹣4)关于y轴对称,则m﹣n的值为()A.4 B.﹣1 C.1 D.06.如图,在中,与的平分线交于点,过点作DE∥BC,分别交于点若,则的周长为()A.9 B.15 C.17 D.207.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,△ABC≌△CDA,则下列结论错误的是()A.AC=CA B.AB=AD C.∠ACB=∠CAD D.∠B=∠D9.点P(4,5)关于y轴对称的点的坐标是()A.(-4,5)B.(-4,-5)C.(4,-5)D.(4,5)10.如图所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8a C.6+a D.6+2a11.如图,中,,,垂直平分,则的度数为()A. B. C. D.12.如图,≌,下列结论正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.14.已知函数y=-3x+1的图象经过点、,则___(填“”,“”或“”).15.如图,在△ABC和△DEF中,∠B=40°,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S△ABC_____S△DEF.(填“>”或“=”或“<”).16.如图,已知在锐角△ABC中,AB.AC的中垂线交于点O,则∠ABO+∠ACB=________.17.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.18.如果实数x满足,那么代数式的值为.三、解答题(共78分)19.(8分)小明和小津去某风景区游览.小明从明桥出发沿景区公路骑自行车去陶公亭,同一时刻小津在霞山乘电动汽车出发沿同一公路去陶公亭,车速为.他们出发后时,离霞山的路程为,为的函数图象如图所示.(1)求直线和直线的函数表达式;(2)回答下列问题,并说明理由:①当小津追上小明时,他们是否已过了夏池?②当小津到达陶公亭时,小明离陶公亭还有多少千米?20.(8分)八(1)班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:(Ⅰ)如图5-1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图5-2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.阅读后1回答下列问题:
(1)方案(Ⅰ)是否可行?说明理由.(2)方案(Ⅱ)是否可行?说明理由.(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?.21.(8分)计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)222.(10分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.23.(10分)已知,k为正实数.(1)当k=3时,求x2的值;(2)当k=时,求x﹣的值;(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下.24.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长25.(12分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.26.我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.
参考答案一、选择题(每题4分,共48分)1、B【分析】先把方程的左边化为与右边相同的形式,再分别令其一次项系数与常数项分别相等即可求出a、b的值.【详解】解:原方程可化为:x2+(a﹣2)x﹣2a=x2+bx﹣6,故,解得.故选:B.【点睛】本题考查多项式乘法,掌握多项式乘多项式的计算法则是本题的解题关键.2、A【分析】设所求的直线的解析式为,先由所求的直线与平行求出k的值,再由直线与直线y=x-2在x轴上相交求出b的值,进而可得答案.【详解】解:设所求的直线的解析式为,∵直线与直线平行,∴,∵直线y=x-2与x轴的交点坐标为(2,0),直线与直线y=x-2在x轴上相交,∴,解得:b=﹣3;∴此函数的解析式为.故选:A.【点睛】本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.3、C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】=,不是最简分式;=y-x,不是最简分式;是最简分式;==,不是最简分式.故选C.【点睛】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键.4、C【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴DE•AD=a.∴DE=1.当点F从D到B时,用s.∴BD=.Rt△DBE中,BE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.5、B【分析】直接利用关于y轴对称的点的性质得出m,n的值,进而得出答案.【详解】∵点A(m+2,﹣3),B(﹣2,n-4)关于y轴对称,∴m+2=2,n-4=﹣3解得:m=0,n=1则m-n=﹣1故选:B【点睛】本题考查关于y轴对称的点的坐标特征:关于y轴对称的两点,纵坐标相同,横坐标互为相反数.掌握关于y轴对称的点的坐标特征是解题的关键.6、A【分析】由与的平分线交于点,DE∥BC,可得:DB=DO,EO=EC,进而即可求解.【详解】∵BO是∠ABC的平分线,∴∠OBC=∠DBO,∵DEBC,∴∠OBC=∠DOB,∴∠DBO=∠DOB,∴DB=DO,同理:EO=EC,∴的周长=AD+AE+DO+EO=AD+AE+DB+EC=AB+AC=5+4=1.故选A.【点睛】本题主要考查等腰三角形的性质和判定定理,掌握“双平等腰”模型,是解题的关键.7、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.8、B【解析】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.9、A【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】点P(4,5)关于y轴对称的点P1的坐标为(﹣4,5).故选A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、D【分析】在△MNP中,∠P=60°,MN=NP,证明△MNP是等边三角形,再利用MQ⊥PN,求得PM、NQ长,再根据等腰三角形的性质求解即可.【详解】解:∵△MNP中,∠P=60°,MN=NP
∴△MNP是等边三角形.
又∵MQ⊥PN,垂足为Q,
∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,
∵NG=NQ,
∴∠G=∠QMN,
∴QG=MQ=a,
∵△MNP的周长为12,
∴MN=4,NG=2,
∴△MGQ周长是6+2a.
故选:D.【点睛】本题考查了等边三角形的判定与性质,难度一般,认识到△MNP是等边三角形是解决本题的关键.11、B【分析】先根据三角形内角和定理求出的度数,然后根据垂直平分线的性质和等腰三角形的性质得出,最后利用即可得出答案.【详解】∵,,∴.∵垂直平分,∴,∴,∴.故选:B.【点睛】本题主要考查三角形内角和定理,垂直平分线的性质和等腰三角形的性质,掌握三角形内角和定理,垂直平分线的性质和等腰三角形的性质是解题的关键.12、B【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【详解】∵△ABC≌△DEF,∴AB=DE,∠B=∠DEF,∠ACB=∠F,故A、C、D选项错误,不符合题意,∵△ABC≌△DEF,∴BC=EF,∴BC-CE=EF-CE,∴BE=CF,故B选项正确,符合题意,故选:B.【点睛】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.二、填空题(每题4分,共24分)13、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.14、>【分析】把横坐标代入计算可得解.【详解】解:∵一次函数y=-3x+1的图象经过点A(-1,y1)和B(1,y1),∴y1=-3×(-1)+1=4,y1=-3×1+1=-1.∵-1<4,∴y1>y1.故答案为>.点睛:本题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征求出y1、y1的值是解题的关键.15、=【分析】分别表示出两个三角形的面积,根据面积得结论.【详解】接:过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140°,∴∠DEH=40°.∴DH=sin∠DEH×DE=8×sin40°,∴S△DEF=EF×DH=20×sin40°过点A作AG⊥BC,垂足为G.∵AG=sin∠B×AB=5×sin40°,∴S△ABC=BC×AG=20×sin40°∴∴S△DEF=S△ABC故答案为:=【点睛】本题考查了锐角三角函数和三角形的面积求法.解决本题的关键是能够用正弦函数表示出三角形的高.16、90°.【分析】由中垂线的性质和定义,得BA=BC,BE⊥AC,从而得∠ACB=∠A,再根据直角三角形的锐角互余,即可求解.【详解】∵BE是AC的垂直平分线,∴BA=BC,BE⊥AC,∴∠ACB=∠A.∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°.故答案为:90°.【点睛】本题主要考查垂直平分线的性质以及直角三角形的性质定理,掌握垂直平分线的性质,是解题的关键.17、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.18、5【解析】试题分析:∵由得,∴.三、解答题(共78分)19、(1)直线OC的函数表达式为;直线AB的函数表达式为;(2)①当小津追上小明时,他们没过夏池,理由见解析;②当小津到达陶公亭时,小明离陶公亭还有15千米,理由见解析.【分析】(1)先根据点C的纵坐标和电动汽车的车速求出点C的横坐标,再分别利用待定系数法即可求出两条直线的函数表达式;(2)①联立题(1)的两个函数表达式,求出小津追上小明时,y的值,再与比较即可得出答案;②由题(1)知,当小津到达陶公亭时,,代入直线AB的函数表达式求出此时y的值,由此即可得出答案.【详解】(1)由题意得,当小津到达陶公亭时,所用时间为则点C的坐标为由函数图象,可设直线OC的函数表达式为将点代入得,解得故直线OC的函数表达式为由函数图象可知,点A、B的坐标为设直线AB的函数表达式为将代入得,解得故直线AB的函数表达式为;(2)①联立,解得则当小津追上小明时,他们离霞山的距离为又因夏池离霞山的距离为故当小津追上小明时,他们没过夏池;②由(1)知,当小津到达陶公亭时,将代入直线AB的函数表达式得则小明离陶公亭的距离为答:当小津到达陶公亭时,小明离陶公亭还有15千米.【点睛】本题考查了一次函数的实际应用,理解题意,正确求出函数表达式是解题关键.20、(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【解析】(1)由题意可证明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由题意可证明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是∠ABD=∠BDE;若仅满足∠ABD=∠BDE≠90°,仍可以证明△ABC≌△EDC,则也可得到AB=ED.【详解】(1)在△ACB和△DCE中∵AC=DC∠ACB=∠DCEBC=EC∴△ACB≌△DCE(SAS)∴AB=DE,故方案(Ⅰ)可行;(2)∵CB⊥AB、CD⊥DE∴∠ABC=∠EDC=90°在△ABC和△EDC中∵∠ABC=∠EDCBC=DC∠ACB=∠ECD∴△ABC≌△EDC(ASA)∴ED=AB,故方案(Ⅱ)可行;(3)作BF⊥AB,ED⊥BF的目的是作∠ABC=∠EDC=90°;
如果∠ABD=∠BDE≠90°,仍可以利用ASA证明△ABC≌△EDC,则也可得到AB=ED.故答案为:(1)见解析;(2)见解析;(3)∠ABD=∠BDE=90°,成立.【点睛】本题考查全等三角形的应用,关键是掌握全等三角形的判定与性质,证明三角形的全等是证明线段相等的一种重要方法.21、(1)﹣10a6b3;(1)3a1+1ab﹣1b1【分析】(1)直接利用整式的混合运算法则分别化简得出答案;(1)直接利用乘法公式分别化简得出答案.【详解】解:(1)原式=﹣17a6b3﹣4a6(﹣b3)+3a6b3=﹣10a6b3;(1)原式=4a1﹣b1﹣(a1﹣1ab+b1)=3a1+1ab﹣1b1.【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.22、(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD∴∠OAE=∠OCF∠OEA=∠OFC∵AE=CF∴△AEO≌△CFO∴OE=OF(2)连接BO∵OE=OFBE=BF∴BO⊥EF且∠EBO=∠FBO∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC∠BEF=∠BAC+∠EOA∴∠BAC=∠EOAAE=OE∵AE=CFOE=OF∴OF=CF又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=10°∠BAC=30°∵tan∠BAC=∴tan30°=即∴AB=1.考点:三角形全等的证明、锐角三角函数的应用.23、(1)5;(2)±;(3)见解析【分析】(1)根据代入可得结果;(2)先根据,计算的值,再由即可求解;(3)由可知题目错误,由错误题目求解可以得出结果错误.【详解】解:(1)当时,,;(2)当时,,,;(3)由题可知x>0,∴,∵不能等于,即使当时,,的值也不对;题干错误,答案错误,故老师指出了两个错误.【点睛】此题考查了完全平方公式的运用.将所求式子进行适当的变形是解本题的关键.24、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开工会议纪要内容范文(3篇)
- 私营企业股东合作协议书(35篇)
- 天津市重点校联考2024-2025学年高一上学期期中考试历史试题(无答案)
- 陕西省汉中市期中联考2024-2025学年高一上学期11月期中化学试题(含答案)
- 辽宁省抚顺市六校协作体2024-2025学年高一上学期期中语文试卷(含答案)
- 黑龙江省哈尔滨工业大学附属中学2024-2025学年八年级上学期期中考试地理试题(含答案)
- 吉林省“BEST合作体”2023-2024学年高二年级下册7月期末考试生物试题(解析版)
- 出口货物运输代理协议样本
- 企业员工档案托管协议专业版
- 工程监理劳动合同书
- 2024年高等教育经济类自考-企业组织与经营环境笔试历年真题荟萃含答案
- 义务教育语文课程标准(2022年版)
- 苏教版三年级上册多位数乘一位数竖式计算300题及答案
- 知识产权法案例分析:大头儿子案
- 北京燃气公司招聘考试试题
- 超声检查健康宣教课件
- 关于塘栖高中的情况介绍
- 印刷产品种类介绍
- SpringMVC开发技术(习题卷1)
- 《合理使用零花钱》课件
- 医生职业素养的提升与培训
评论
0/150
提交评论