北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市北京一零一中学2025届八年级数学第一学期期末学业水平测试模拟试题末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,是直角三角形,,点、分别在、上,且.下列结论:①,②,③当时,是等边三角形,④当时,,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个2.“某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x米,则可得方程.”根据此情境,题中用“×××××”表示得缺失的条件,应补为()A.每天比原计划多铺设10米,结果延期20天才完成任务B.每天比原计划少铺设10米,结果延期20天才完成任务C.每天比原计划多铺设10米,结果提前20天完成任务D.每天比原计划少铺设10米,结果提前20天完成任务3.下列图形选自历届世博会会徽,其中是轴对称图形的是()A. B.C. D.4.点P是直线y=﹣x+上一动点,O为原点,则OP的最小值为()A.2 B. C.1 D.5.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、36.下列运算正确的是()A. B. C. D.7.小马虎在下面的计算中只做对了一道题,他做对的题目是()A. B. C. D.8.在直角坐标系中,函数与的图像大数是()A. B.C. D.9.练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有①②③④A.1个 B.2个 C.3个 D.4个10.如图,在的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中是一个格点三角形.则图中与成轴对称的格点三角形有()A.个 B.个 C.个 D.个二、填空题(每小题3分,共24分)11.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有______名学生是乘车上学的.12.如图所示,两条直线l1,l2的交点坐标可以看作方程组_____的解.13.如图,△ABC≌△ADE,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC的度数为______.14.若分式的值为0,则x的值为_____15.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).16.如图,,,若,,则D到AB的距离为________。17.如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=_____cm.18.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为______.三、解答题(共66分)19.(10分)在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?20.(6分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.(1)当时,=,=;(2)求当为何值时,是直角三角形,说明理由;(3)求当为何值时,,并说明理由.21.(6分)解方程组.(1)(2).22.(8分)定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为1,0的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为p,q,且BOD150,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为,且DOB30,求OM的长.23.(8分)如图,,,,,垂足分别为D、E,CE与AB相交于O.(1)证明:;(2)若AD=25,BE=8,求DE的长;(3)若,求的度数.24.(8分)如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.25.(10分)某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.26.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3),过动点M(n,0)作x轴的垂线与直线l1和l2分别交于P、Q两点.(1)求m的值及l2的函数表达式;(2)当PQ≤4时,求n的取值范围;(3)是否存在点P,使S△OPC=2S△OBC?若存在,求出此时点P的坐标,若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【分析】①②构造辅助圆,利用圆周角定理解决问题即可;

③想办法证明BD=AD即可;

④想办法证明∠BAD=45°即可解决问题.【详解】解:如图,由题意:,以A为圆心AB为半径,作⊙A.∵

∴,故①②正确,当时,∠DAC=∠C,

∵∠BAD+∠DAC=90°,∠ABD+∠C=90°,

∴∠BAD=∠ABD,

∴BD=AD,

∵AB=AD,

∴AB=AD=BD,

∴△ABD是等边三角形,故③正确,

当时,∠ABD=∠ADB=67.5°,

∴∠BAD=180°−2×67.5°=45°,

∴∠DAE=∠BAD=45°,

∵AB=AE,AD=AD,

∴△BAD≌△EAD(SAS),∴,故④正确.

故选:D.【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.2、C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x米,那么x+10就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C.【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.3、B【解析】A、不是轴对称图形,故此选项错误;

B、是轴对称图形,故此选项正确;

C、不是轴对称图形,故此选项错误;

D、不是轴对称图形,故此选项错误;

故选B.4、C【分析】首先判定当OP⊥AB的时候,OP最小,然后根据函数解析式求得OA、OB,再根据勾股定理求得AB,进而即可得出OP.【详解】设直线y=﹣x+与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小,如图所示:当x=0时,y=,∴点A(0,),∴OA=;当y=0时,求得x=,∴点B(,0),∴OB=,∴AB==2.∴OP==2.故选:C.【点睛】此题主要考查一次函数以及勾股定理的运用,熟练掌握,即可解题.5、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:根据三角形任意两边的和大于第三边,可知

A、2+4<7,不能够组成三角形,故A错误;

B、2+3=5,不能组成三角形,故B错误;

C、7+3>7,能组成三角形,故C正确;

D、3+5<9,不能组成三角形,故D错误;

故选:C.【点睛】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.6、C【分析】分别根据积的乘方运算法则、同底数幂的除法法则和完全平方公式计算各项,进而可得答案.【详解】解:A、,故本选项运算错误,不符合题意;B、,故本选项运算错误,不符合题意;C、,故本选项运算正确,符合题意;D、,故本选项运算错误,不符合题意;故选:C.【点睛】本题考查了幂的运算性质和完全平方公式,属于基础题目,熟练掌握基本知识是解题的关键.7、D【分析】根据分式的运算法则逐一计算即可得答案.【详解】A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.8、B【分析】根据四个选项图像可以判断过原点且k<0,,-k>0即可判断.【详解】解:A.与图像增减相反,得到k<0,所以与y轴交点大于0故错误;B.与图像增减相反,得到k<0,所以与y轴交点大于0故正确;C.与图像增减相反,为递增一次函数且不过原点,故错误;D.过原点,而图中两条直线都不过原点,故错误.故选B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.9、B【解析】试题解析:①x3+x=x(x2+1),不符合题意;②x2-2xy+y2=(x-y)2,符合题意;③a2-a+1不能分解,不符合题意;④x2-16y2=(x+4y)(x-4y),符合题意,故选B10、C【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【详解】符合题意的三角形如图所示:满足要求的图形有6个故选:C【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义.二、填空题(每小题3分,共24分)11、260【详解】,故答案为:260.12、【解析】先利用待定系数法求出直线l1的解析式y=x+1和直线l2的解析式y=x,然后根据一次函数与二元一次方程(组)的关系求解.【详解】设直线l1的解析式为y=kx+b,把(﹣2,0)、(2,2)代入得,解得,所以直线l1的解析式为y=x+1,设直线l2的解析式为y=mx,把(2,2)代入得2m=2,解得m=1,所以直线l2的解析式为y=x,所以两条直线l1,l2的交点坐标可以看作方程组的解.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数的交点坐标满足两个一次函数解析式所组成的方程组.也考查了待定系数法求一次函数解析式.13、60°【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.【点睛】本题考查全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.14、-1【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】由题意,得x+1=0且x≠0,解得x=-1,故答案为:-1.【点睛】此题主要考查分式的值,解题的关键是熟知分子为零且分母不为零时分式的值为零.15、xn+1-1【解析】观察其右边的结果:第一个是x2-1;第二个是x3-1;…依此类推,则第n个的结果即可求得.(x-1)(xn+xn-1+…x+1)=xn+1-1.16、1.【分析】作DE⊥AB,根据角的平分线上的点到角的两边的距离相等即可得到答案.【详解】解:作DE⊥AB于E,

∵BC=10,BD=6,

∴CD=BC-BD=1,

∵∠1=∠2,∠C=90°,DE⊥AB,

∴DE=CD=1,

故答案为:1.【点睛】本题主要考查角平分线的性质,角平分线上的点到角的两边的距离相等.17、1.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BC=BE,然后求出△ADE的周长=AB.【详解】∵∠C=90∘,BD平分∠CBA,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,∵∴Rt△BCD≌Rt△BED(HL),∴BC=BE,∴△ADE的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB,∵△ADE的周长为1cm,∴AB=1cm.故答案为1cm.【点睛】本题考查了角平分线的性质和等腰直角三角形,熟练掌握这两个知识点是本题解题的关键.18、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】根据科学记数法的表示方法可得:0.0000000031=3.1×10-1.故答案为3.1×10-1米.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题(共66分)19、150元【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【详解】解:设第二批鲜花每盒的进价是x元,依题意有,解得x=150,经检验:x=150是原方程的解.故第二批鲜花每盒的进价是150元.考点:分式方程的应用20、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;

(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;

(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,

∵∠ABC=90°,AB=16,BC=12,∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,∴解得BD=9.6,∴t=7.2÷2=3.6秒;

②∠CBD=90°时,点D和点A重合,

t=20÷2=10秒,

综上所述,当t=3.6或10秒时,是直角三角形;

(3)如图,过点B作BF⊥AC于F,

由(2)①得:CF=7.2,

∵BD=BC,∴CD=2CF=7.2×2=14.4,

∴t=14.4÷2=7.2,

∴当t=7.2秒时,,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键21、(1);(2).【分析】(1)利用加减消元法求出解即可;(2)利用加减消元法求出解即可.【详解】解:(1)得:③+②得:解得:将代入①,得:12+3y=-3,解得:y=-5,∴方程组的解为;(2)得:得:得:解得:x=1,将x=1代入①,得:5-2y=1,解得:y=2,∴方程组的解为;【点睛】此题考查解二元一次方程组,解题关键在于掌握利用加减法消元法解二元一次方程组.22、(1)2;(2);(3)【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M作MN⊥CD于N,根据已知得出,,求出∠MON=60°,根据含30度直角三角形的性质和勾股定理求出即可解决问题;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点,首先证明,求出,,然后过作,交延长线于,根据含30度直角三角形的性质求出,,再利用勾股定理求出EF即可.【详解】解:(1)由题意可知,在直线CD上,且在点O的两侧各有一个,共2个,故答案为:2;(2)过作于,∵直线于,,∴,∵,,∴,∴,∴;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点.∴,,∴,,,∴,∴△OEF是等边三角形,∴,∵,,∴,,∵,∴,过作,交延长线于,∴,在中,,则,在中,,,∴,∴.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23、(1)见解析;(2)17;(3)∠CAD=20°.【分析】(1)根据垂直的定义可得∠BEC=∠ACB=∠ADC=90°,然后根据同角的余角相等可得∠ACD=∠CBE,然后利用AAS即可证出结论;(2)根据全等三角形的性质可得AD=CE,BE=CD,利用等量代换即可求出结论;(3)根据等腰直角三角形的性质∠ABC=∠BAC=45°,从而求出∠BCE,然后根据全等三角形的性质即可得出结论.【详解】解:(1)∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠BEC=∠ACB=∠ADC=90°∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°∴∠ACD=∠CBE∵AC=BC∴BCE≌CAD(AAS);(2)∵BCE≌CAD,∴AD=CE,BE=CD,∴DE=CE﹣CD=AD﹣BE=25﹣8=17;(3)∵∠ACB=90°,AC=BC∴∠ABC=∠BAC=45°∵∠BOE=65°∴∠BCE=∠BOE-∠ABC=20°∵BCE≌CAD∴∠BCE=∠CAD∴∠CAD=20°.【点睛】此题考查的是全等三角形的判定及性质和等腰直角三角形的性质,掌握全等三角形的判定及性质和等腰直角三角形的性质是解决此题的关键.24、(1)A(2,0);C(0,1);(2);(3)存在,P的坐标为(0,0)或或.【分析】(1)已知直线y=-2x+1与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【详解】(1)(1)令y=0,则-2x+1=0,解得x=2,

∴A(2,0),

令x=0,则y=1,

∴C(0,1);(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=1-x,根据题意得:(1-x)2+22=x2解得:x=此时,AD=,D(2,)设直线CD为y=kx+1,把D(2,)代入得=2k+1解得:k=-∴该直线CD解析式为y=-x+1.(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD=1-=,AP=BC=2由AD×PQ=DP×AP得:PQ=3∴PQ=∴xP=2+=,把x=代入y=-x+1得y=此时P(,)(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:CQ=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论