版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省长沙市宁乡县数学八上期末学业质量监测模拟试题题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若三角形的两边分别是4cm和5cm,则第三边长可能是()A.1cm B.4cm C.9cm D.10cm2.函数y=中,自变量x的取值范围是()A.x>2 B.x≥2 C.x<2 D.3.禽流感病毒的形状一般为球形,直径大约为0.000000102米,数0.000000102用科学记数法表示为()A. B. C. D.4.4的算术平方根是A.16 B.2 C.-2 D.5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°6.如果把分式中的x与y都扩大2倍,那么这个分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.扩大6倍7.已知正比例函数()的函数值随的增大而增大,则函数的图象大致是()A. B. C. D.8.如图,在的正方形网格中,有一个格点(阴影部分),则网格中所有与成轴对称的格点三角形的个数为()A.2 B.3 C.4 D.59.下列各数中,是无理数的是().A. B. C. D.010.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6 B.﹣6x3y5 C.﹣5x3y5 D.﹣24x7y511.的算术平方根为()A. B. C. D.12.如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为().A.27° B.37° C.63° D.117°二、填空题(每题4分,共24分)13.计算:=____.14.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是______cm.15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.16.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;17.已知,则的值为____.18.=________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.(1)求证:AC⊥AB;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.20.(8分)先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.21.(8分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?22.(10分)如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.23.(10分)一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.24.(10分)如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置.25.(12分)已知关于x,y的二元一次方程组的解满足x=y,求m的值.26.先化简,再求值:,其中.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据三角形的三边关系,求出第三边的取值范围,然后得到可能的值.【详解】解:∵三角形的两边分别是4cm和5cm,设第三边为x,则有,∴,∴第三边可能为:4cm;故选:B.【点睛】本题考查了三角形的三边关系,解题的关键是掌握三角形的三边关系进行解题.2、B【分析】根据二次根式的被开方数的非负性即可.【详解】由二次根式的被开方数的非负性得解得故选:B.【点睛】本题考查了二次根式的被开方数的非负性的应用、求函数自变量的取值范围问题,掌握理解被开方数的非负性是解题关键.3、C【分析】本题考查用科学记数法表示绝对值小于1的数,一般形式为,其中,由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,故选:.【点睛】科学计数法一般形式为,其中.绝对值大于10时,n为正整数,绝对值小于1时,n为负整数.4、B【分析】根据算术平方根的定义直接求解即可.【详解】解:4的算术平方根是,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.5、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6、B【分析】根据分式的分子分母都乘以或处以同一个不为零的数,分式的值不变,可得答案.【详解】分式中的x与y都扩大2倍,得,
故选:B.【点睛】此题考查分式的基本性质,解题关键在于掌握分式的分子分母都乘以或处以同一个不为零的数,分式的值不变.7、A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【详解】解:∵随的增大而增大,∴k>0,又经过点(0,2),同时随的增大而增大,故选A.【点睛】本题主要考查了一次函数的图象,掌握一次函数的图象是解题的关键.8、D【分析】因为对称图形是全等的,所以面积相等,据此连接矩形的对角线,观察得到的三角形即可解答.【详解】如图,与△ABC成轴对称的格点三角形有△ACF、△ACD、△DBC,△HEG,△HBG共5个,故选D.【点睛】此题考查利用轴对称设计图案.9、C【分析】根据无理数的定义解答.【详解】=2,是有理数;-1,0是有理数,π是无理数,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10、B【解析】根据单项式乘单项式法则直接计算即可.【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,故选:B.【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.11、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.12、D【分析】利用HL证出RtBDF≌RtADC,从而得出∠BFD=∠C=63°,再根据平角的定义即可求出结论.【详解】解:∵AD是BC边上的高,∴∠BDF=∠ADC=90°在RtBDF和RtADC中∴RtBDF≌RtADC∴∠BFD=∠C=63°∴∠AFB=180°-∠BFD=117°故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握利用HL判定两个三角形全等是解决此题的关键.二、填空题(每题4分,共24分)13、1【解析】根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【详解】解:∵12=21,
∴=1,
故答案为:1.【点睛】本题考查了算术平方根的定义,先把化简是解题的关键.14、1【分析】把长方体展开为平面图形,分两种情形求出AB的长,比较即可解答.【详解】把长方体展开为平面图形,分两种情形:如图1中,AB=,如图2中,AB=,∵1<4,∴爬行的最短路径是1cm.故答案为1.【点睛】本题考查平面展开-最短路径问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15、1【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1210,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=1,故答案为1.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.16、AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,
∴BD-CD=CE-CD,
∴BC=DE,
①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).17、1【分析】根据已知得到,代入所求式子中计算即可.【详解】∵,∴,∴.故答案为:1.【点睛】本题考查了求分式的值,利用已知得到,再整体代入是解题的关键.18、1.【解析】试题分析:先算括号里的,再开方..故答案是1.考点:算术平方根.三、解答题(共78分)19、(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)【分析】(1)先解方程组得出m和n的值,从而得到B,C两点坐标,结合A点坐标算出AB2,BC2,AC2,利用勾股定理的逆定理即可证明;(2)过D作DF⊥y轴于F,根据题意得到BF=FC,F(0,1),设直线AC:y=kx+b,利用A和C的坐标求出表达式,从而求出点D坐标;(3)分AB=AP,AB=BP,AP=BP三种情况,结合一次函数分别求解.【详解】解:(1)∵,得:,∴B(0,3),C(0,﹣1),∵A(﹣,0),B(0,3),C(0,﹣1),∴OA=,OB=3,OC=1,∴AB2=AO2+BO2=12,AC2=AO2+OC2=4,BC2=16∴AB2+AC2=BC2,∴∠BAC=90°,即AC⊥AB;(2)如图1中,过D作DF⊥y轴于F.∵DB=DC,△DBC是等腰三角形∴BF=FC,F(0,1),设直线AC:y=kx+b,将A(﹣,0),C(0,﹣1)代入得:直线AC解析式为:y=x-1,将D点纵坐标y=1代入y=x-1,∴x=-2,∴D的坐标为(﹣2,1);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0,代入y=x+3,可得:x=,∵OB=3,∴BE=,∴∠BEO=30°,∠EBO=60°∵AB=,OA=,OB=3,∴∠ABO=30°,∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣,代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).【点睛】本题考查了解二元一次方程组,勾股定理的逆定理,含30°的直角三角形,等腰三角形的性质,一次函数的应用,知识点较多,难度较大,解题时要注意分类讨论.20、;当时,原式=3【分析】先根据分式的各个运算法则化简,然后代入一个使原分式有意义的x的值计算即可.【详解】解:要使原式有意义且当时,原式【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.21、(1)①全等,理由见解析;②cm/s;(2)经过s点P与点Q第一次在边AB上相遇.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.【详解】(1)①∵t=1s,∴BP=CQ=3×1=3cm.∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).②∵vP≠vQ,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得:,∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm.∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.【点睛】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.22、当x为秒时,△PBE≌△QBE【分析】根据正方形的性质和全等三角形的判定可知当PB=QB时,△PBE≌△QBE.据此可求出时间.【详解】解:∵四边形ABCD是正方形.
∴∠ABD=∠DBC.∵BE=BE,
∴当PB=QB时,△PBE≌△QBE.∵P的速度是每秒1个单位,Q的速度是每秒2个单位,∴AP=x,BQ=2x,∴PB=8-x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TS 18013-6:2024 EN Personal identification - ISO-compliant driving licence - Part 6: mDL test methods
- 房地产 -中建工法成果汇编
- 发动机装调工考试题库及答案
- 人造木材制造工艺改进
- 强化基层执法队伍建设的几点思考
- 2024年电动汽车项目资金需求报告代可行性研究报告
- 【人教】第一次月考B卷(考试版+解析)
- 漓江导游词(34篇)
- 英语老师教学工作总结
- 高考考前领导动员讲话稿范文(3篇)
- 数控车床编程基本学习培训课件
- 小讲课-中心静脉压的测量及临床意义
- 工业以太网交换机招标技术规范书
- 公司博士后工作站年度工作总结
- 技工院校电子商务专业人才培养方案
- 询比采购文件模板
- 铜梁区自然灾害类风险评估等级表
- 斯瓦希里语轻松入门
- 精装修工程试验检测计划
- 基础体温表格基础体温表
- 新教材人教版高中数学必修第一册 4.1.1 n次方根与分数指数幂 教学课件
评论
0/150
提交评论