2025届江西省莲花县数学八上期末经典试题含解析_第1页
2025届江西省莲花县数学八上期末经典试题含解析_第2页
2025届江西省莲花县数学八上期末经典试题含解析_第3页
2025届江西省莲花县数学八上期末经典试题含解析_第4页
2025届江西省莲花县数学八上期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省莲花县数学八上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,则∠C为()A.25° B.35° C.40° D.50°2.在xy,,(x+y),这四个有理式中,分式是()A.xy B. C.(x+y) D.3.下列方程中,不论m取何值,一定有实数根的是()A. B.C. D.4.已知,点在内部,点与点关于对称,点与点关于对称,则是()A.含30°角的直角三角形 B.顶角是30°的等腰三角形C.等边三角形 D.等腰直角三角形5.已知,则代数式的值是()A. B. C. D.6.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°7.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75° B.135° C.120° D.105°8.某工程对承接了60万平方米的绿化工程,由于情况有变,……,设原计划每天绿化的面积为万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务9.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,在同一直线上,≌,,,则的值为()A. B. C. D.11.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.612.矩形的面积为18,一边长为,则另一边长为()A. B. C. D.24二、填空题(每题4分,共24分)13.如图,将一块直角三角板放置在锐角上,使得该三角板的两条直角边、恰好分别经过、,若,则=_________.14.若是关于的完全平方式,则__________.15.如图等边,边长为6,是角平分线,点是边的中点,则的周长为________.16.已知5+7的小数部分为a,5﹣7的小数部分为b,则a+b=_____.17.用科学记数法表示0.00218=_______________.18.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.三、解答题(共78分)19.(8分)多边形在直角坐标系中如图所示,在图中分别作出它关于轴、轴的对称图形.20.(8分)已知如图1,在中,,,点是的中点,点是边上一点,直线垂直于直线于点,交于点.(1)求证:.(2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.21.(8分)计算:;22.(10分)先化简,再求值:,在0,1,2,三个数中选一个合适的,代入求值.23.(10分)对于二次三项式,可以直接用公式法分解为的形式,但对于二次三项式,就不能直接用公式法了,我们可以在二次三项式中先加上一项,使中的前两项与构成完全平方式,再减去这项,使整个式子的值不变,最后再用平方差公式进步分解.于是.像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1);(2).24.(10分)解分式方程和不等式组:(1)(2)解不等式组并写出不等式组的整数解.25.(12分)如图,,分别是,中点,,垂足为,,垂足为,与交于点.(1)求证:;(2)猜想与的数量关系,并证明.26.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“湘一四边形”.(1)已知:如图1,四边形是“湘一四边形”,,,.则,,若,,则(直接写答案)(2)已知:在“湘一四边形”中,,,,.求对角线的长(请画图求解),(3)如图(2)所示,在四边形中,若,当时,此时四边形是否是“湘一四边形”,若是,请说明理由:若不是,请进一步判断它的形状,并给出证明.

参考答案一、选择题(每题4分,共48分)1、B【解析】解:∵AB=AD,∴∠B=∠ADB,由∠BAD=40°得∠B=∠ADB=70°,∵AD=DC,∴∠C=∠DAC,∴∠C=∠ADB=35°.故选B.2、D【分析】根据分式的定义逐项排除即可;【详解】解:A.属于整式中单项式不是分式,不合题意;B.属于整式中的单项式不是分式,不合题意;C.属于整式中的多项式不是分式,不合题意;D.属于分式,符合题意;故答案为D.【点睛】本题考查了分式的定义,牢记分式的分母一定含有字母其π不是字母是解答本题的关键.3、B【分析】分别计算△,再根据△与0的关系来确定方程有无实数根.【详解】解:A,,,当时,方程无实数根,故选项错误;B,,,不论m取何值,方程一定有实数根,故选项正确;C,,,当时,方程无实数根,故选项错误;D,,,当时,方程无实数根,故选项错误;故选:B.【点睛】此题考查根的判别式,解题的关键是注意分三种情况进行讨论.4、C【解析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断.【详解】如图,

∵P,P1关于直线OA对称,P、P2关于直线OB对称,

∴OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,

∵∠AOB=30°,

∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=2∠AOB=60°,

∴△P1OP2是等边三角形.

故选C.【点睛】考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题.5、C【分析】先将化简得到a-b=-2ab,再代入代数式进行计算.【详解】∵,∴a-b=-2ab,∴,故选:C.【点睛】此题考查分式的化简计算,将代数式的值整体代入计算是求分式值的方法.6、D【分析】根据SAS即可证明△ABD≌△ACE,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,故A正确;∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°.∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,故B正确.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,故C正确.∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故D错误.故选D.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7、D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选8、A【解析】根据工作时间=工作总量÷工作效率结合所列分式方程,即可找出省略的条件,此题得解.【详解】解:设原计划每天绿化的面积为x万平方米,∵所列分式方程是,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务.故选:A.【点睛】本题考查了分式方程的应用,根据给定的分式方程,找出省略的条件是解题的关键.9、A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y轴的交点在y轴的负半轴,∴一次函数的图象经过第二、三、四象限,不经过第一象限,故选:A.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.10、C【分析】设BD=x,根据全等的性质得到BC=x,故BE=AB=x+2,再根据得到方程即可求解.【详解】设BD=x∵≌∴BD=BC=x∴BE=AB=x+2,∵∴AB+BD=8,即x+2+x=8解得x=3∴=EC×BD=×2×3=3故选C.【点睛】此题主要考查全等的性质,解题的关键是熟知三角形的性质及三角形的面积公式.11、D【分析】根据三角形的三边关系即可解答.【详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.12、C【分析】根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.【详解】解:∵矩形的面积为18,一边长为,

∴另一边长为=,

故选:C.【点睛】本题考查矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解题的关键.二、填空题(每题4分,共24分)13、50°【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据直角三角形两锐角互余的关系得到∠DBC+∠DCB=90°,由此即可得到答案.【详解】∵∠A+∠ABC+∠ACB=180°,,∴∠ABC+∠ACB=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴=(∠ABC+∠ACB)-(∠DBC+∠DCB)=50°,故答案为:50°.【点睛】此题考查三角形的内角和定理,直角三角形两锐角互余的关系,所求角度不能求得每个角的度数时,可将两个角度的和求出,这是一种特殊的解题方法.14、1或-1【解析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案为-1或1.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.15、6+【分析】由等腰三角形的三线合一的性质得到BD=CD,由勾股定理求出AD,由直角三角形斜边上的中线的性质求出DE,即可求出的周长.【详解】解:∵AB=6,是角平分线,∴BD=CD=3,∴AD===,∵点是边的中点,∴AE=3∴DE=AB=3∴的周长=AD+AE+DE=6+故答案为6+.【点睛】此题主要考查了等腰三角形的性质,勾股定理,,直角三角形斜边上的中线的性质,求出DE和AD的长是解决问题的关键..16、2【解析】先估算出5+7的整数部分,然后可求得a的值,然后再估算出5-7的整数部分,然后可求得b的值,最后代入计算即可.【详解】解:∵4<7<9,

∴2<7<2.

∴a=5+7-7=7-2,b=5-7-2=2-7.

∴a+b=7-2+2-7=2.故答案为:2.【点睛】本题主要考查的是估算无理数的大小,求得a,b的值是解题的关键.17、2.18×10-3【解析】试题解析:用科学记数法表示为:故答案为点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.18、5:4:1【解析】试题解析:设此三角形三个内角的比为x,2x,1x,则x+2x+1x=180,6x=180,x=10,∴三个内角分别为10°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:1,故答案为5:4:1.三、解答题(共78分)19、见详解【分析】分别作出各点关于x轴的对称点和各点关于y轴的对称点,再顺次连接即可.【详解】如图,多边形在直角坐标系中关于轴的对称图形是多边形A"B"C"D";多边形在直角坐标系中关于轴的对称图形是多边形A'B'C'D'.【点睛】本题考查的是作图−−轴对称变换,熟知关于坐标轴轴对称的点的坐标特点是解答此题的关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21、8x+29【分析】先乘除去括号,再加减;主要环节是根据乘法公式展开括号.【详解】解:原式==【点睛】本题考查了整式的混合运算,主要涉及了乘法公式,灵活利用完全平方公式及平方差公式进行计算是解题的关键.22、,当x=1时,原式=.【分析】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到,可通分得,代x值时,根据分式和除式有意义的条件,必须使分母或被除式不为0,故只能取x=1.【详解】解:原式=.当x=1时,原式=.23、(1);(2)【分析】(1)先将进行配方,将其配成完全平方,再利用平方差公式进行因式分解即可;(2)先将进行配方,配成完全平方,在利用平方差公式进行因式分解.【详解】解:(1)(2)【点睛】本题主要考查的是因式分解,正确的理解清楚题目意思,掌握题目给的方法是解题的关键.24、(1)x=-1;(2)1≤x<2,x=1.【分析】(1)根据解分式方程的一般步骤解方程即可;(2)根据不等式的基本性质分别解两个不等式,然后取公共解集,即可得出结论.【详解】(1)解:去分母,得化简得,2x=-2系数化为1得,x=-1经检验x=-1是原分式方程的解.(2)解:解不等式①,得x≥1.解不等式②,得x<2.∴不等式组的解集为1≤x<2.∴不等式组的整数解为x=1.【点睛】此题考查的是解分式方程和解一元一次不等式组,掌握解分式方程的一般步骤和不等式的基本性质是解决此题的关键.25、(1)证明见解析(2)猜想:【解析】(1)连接BC,再利用垂直平分线的性质直接得到相应线段的相等关系;(2)由(1)得出三角形ABC是等边三角形,再推出,即可得出答案.【详解】(1)连接∵点是中点且于点∴是线段的垂直平分线∴同理∴(2)猜想:证明:由(1)得∴是等边三角形∴在中在中∵在中又∵∴∴∴【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质26、(1)85°,115°,1;(2)AC的长为或;(1)四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形,理由见解析【分析】(1)连接BD,根据“湘一四边形”的定义求出∠B,∠C,利用等腰三角形的判定和性质证明BC=DC即可.

(2)分两种情形:①如图1-1,∠B=∠D=90°时,延长AD,BC交于点E.②如图2-1中,∠A=∠C=60°时,过D分别作DE⊥AB于E,DF⊥BC于点F,分别求解即可解决问题.

(1)结论:四边形ABCD不是“湘一四边形”,四边形ABCD是平行四边形.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论