2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题含解析_第1页
2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题含解析_第2页
2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题含解析_第3页
2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题含解析_第4页
2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省武汉东西湖区七校联考八年级数学第一学期期末经典试题经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.以下列各组数据为边长,能构成三角形的是:A.4,4,8 B.2,4,7 C.4,8,8 D.2,2,72.下列从左到右的变形:;;;其中,正确的是A. B. C. D.3.下列运算中,正确的是()A.(a2)3=a5 B.3a2÷2a=a C.a2•a4=a6 D.(2a)2=2a24.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)5.如图,,.,,垂足分别是点,,则的长是()A.7 B.3 C.5 D.26.下列计算结果正确的是()A.﹣2x2y3+xy=﹣2x3y4 B.3x2y﹣5xy2=﹣2x2yC.(3a﹣2)(3a﹣2)=9a2﹣4 D.28x4y2÷7x3y=4xy7.不改变分式的值,把它的分子和分母中各项系数都化为整数,则所得结果为()A. B.C. D.8.若分式的值为零,则x=()A.3 B.-3 C.±3 D.09.下列计算中,正确的是()A. B. C. D.10.已知A、B两个港口之间的距离为100千米,水流的速度为b千米/时,一艘轮船在静水中的速度为a千米/时,则轮船往返两个港口之间一次需要的时间是()A.+ B.C.+ D.﹣11.2-3的倒数是()A.8 B.-8 C. D.-12.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠B=10°,ED垂直平分BC,ED=1.则CE的长为.14.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为.15.若.则的平方根是_____.16.已知,那么的值是________.17.若分式的值为0,则x的值等于________.18.分解因式:ax2-a=______.三、解答题(共78分)19.(8分)如图,点B,C,D在同一条直线上,,是等边三角形,若,,求的度数;求AC长.20.(8分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.21.(8分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是1.运动员甲测试成绩统计表测试序号12345618910成绩(分)16816868(1)填空:______;______.(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?22.(10分)如图,以为圆心,以为半径画弧交数轴于点;(1)说出数轴上点所表示的数;(2)比较点所表示的数与-2.5的大小.23.(10分)化简:(1)(2)(3)(4)24.(10分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+=1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证:CF=BC;②直接写出点C到DE的距离.25.(12分)解下列分式方程:(1)(2).26.如图,是等腰直角三角形,,点是的中点,点,分别在,上,且,探究与的关系,并给出证明.

参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵4+4=8,故以4,4,8为边长,不能构成三角形;∵2+4<7,故以2,4,7为边长,不能构成三角形;∵4,8,8中,任意两边之和大于第三边,故以4,8,8为边长,能构成三角形;∵2+2<7,故以2,2,7为边长,不能构成三角形;故选C.【点睛】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2、B【解析】根据分式的基本性质进行计算并作出正确的判断.【详解】①,当a=1时,该等式不成立,故①错误;②,分式的分子、分母同时乘以b,等式仍成立,即,故②正确;③,当c=1时,该等式不成立,故③错误;④,因为x2+1≠1,即分式ab的分子、分母同时乘以(x2+1),等式仍成立,即成立,故④正确;综上所述,正确的②④.故选:B.【点睛】本题考查了分式的基本性质,注意分式的基本性质中分子、分母乘以(或除以)的数或式子一定不是1.3、C【分析】分别根据同底数幂的乘法、除法运算法则以及幂的乘方运算法则分别求出即可.【详解】解:A、(a2)3=a6,故此选项错误;B、3a2÷2a=a,故此选项错误;C、此选项正确;D、(2a)2=4a2,故此选项错误;故选C.4、C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5、B【分析】根据条件可以得出,进而得出,就可以得出,就可以求出的值.【详解】解:,,,.,.在和中,,,,..故选:.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形.6、D【分析】﹣2x2y3+xy和3x2y﹣5xy2不能合并同类项;(3a﹣2)(3a﹣2)是完全平方公式,计算结果为9a2+4﹣12a.【详解】解:A.﹣2x2y3+xy不是同类项,不能合并,故A错误;B.3x2y﹣5xy2不是同类项,不能合并,故B错误;C.(3a﹣2)(3a﹣2)=9a2+4﹣12a,故C错误;D.28x4y2÷7x3y=4xy,故D正确.故选:D.【点睛】本题考查合并同类项,整式的除法,完全平方公式;熟练掌握合并同类项,整式的除法的运算法则,牢记完全平方公式是解题的关键.7、A【分析】要将分子分母的系数都化为正数,只需分子分母同乘10再约分可.【详解】,故选A.【点睛】本题考查分式的性质,分子分母同乘或同除一个不为0的数,分式的值不变,掌握性质是关键.8、B【分析】根据题意分式的值等于1时,分子就等于1且分母不为1.即可求出答案.【详解】解:∵分式的值为零,∴,且,∴,且,∴;故选:B.【点睛】考查了分式的值为零的条件,分式的值的由分子分母共同决定,熟记分式的值为1是解题的关键.9、C【分析】直接利用同底数幂的乘除运算法则以及幂的乘方、积的乘方运算法则计算得出答案.【详解】A.,故此选项错误;B.,故此选项错误;C.,故此选项正确;D.,故此选项错误;故选:C.【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方、积的乘方运算,正确掌握运算法则是解题关键.10、C【分析】直接根据题意得出顺水速度和逆水速度,进而可得出答案.【详解】由题意得:顺水速度为千米/时,逆水速度为千米/时则往返一次所需时间为故选:C.【点睛】本题考查了分式的实际应用,依据题意,正确得出顺水速度和逆水速度是解题关键.11、A【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【详解】2-3==,则2-3的倒数是8,故选:A.【点睛】本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.12、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.二、填空题(每题4分,共24分)13、4【解析】试题分析:因为ED垂直平分BC,所以BE=CE,在Rt△BDE中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.14、130°【解析】试题分析:∵△ABD≌△CBD,∴∠C=∠A=80°,∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.故答案为130°.考点:全等三角形的性质15、【分析】先根据算术平方根的非负性、偶次方的非负性求出x、y的值,从而可得的值,再根据平方根的定义即可得.【详解】由题意得:,解得,则,因此,的平方根是,故答案为:.【点睛】本题考查了算术平方根的非负性、平方根等知识点,掌握理解算术平方根的非负性是解题关键.16、.【分析】根据得到b=3a,再代入要求的式子进行计算即可.【详解】∵∴b=3a,∴故答案为:.【点睛】此题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键,本题是一道基础题.17、.【分析】分式的值为零,分子等于零且分母不等于零.【详解】解:由题意可得解得:故答案为:.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.18、【解析】先提公因式,再套用平方差公式.【详解】ax2-a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.三、解答题(共78分)19、(1)60°;(2)3.【解析】由等边三角形的性质可得,,,可证≌,可得,可得的度数;由全等三角形的性质和等边三角形的性质可求AC的长.【详解】解:,是等边三角形

,,,

,且,,

,【点睛】考查了全等三角形判定和性质,等边三角形的性质,熟练运用全等三角形的判定和性质解决问题是本题的关键.20、14【解析】根据勾股定理得AB=7,由旋转性质可得∠A′BA=90°,A′B=AB=7.继而得出AA′=14.【详解】∵点A(2,0),点B(0,3),∴OA=2,OB=3.在Rt△ABO中,由勾股定理得AB=7.根据题意,△A′BO′是△ABO绕点B逆时针旋转90°得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=7,∴AA′=A'B2+A【点睛】本题主要考查旋转的性质及勾股定理,熟练掌握旋转的性质是解题的关键.21、(1)1,1;(2)选乙运动员更合适,理由见解析.【分析】(1)观察表格,根据众数的定义即可求解;(2)先分别求出三人的方差,再根据方差的意义求解即可.【详解】解:(1)∵运动员甲测试成绩的众数是1,∴数据1出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中1分出现的次数为4次,而1分已经出现2次,∴.故答案为:1,1;(2)甲成绩重新排列为:6、6、6、1、1、1、1、8、8、8,∴,,,,,,∵,,∴选乙运动员更合适.【点睛】本题考查方差、条形图、折线图、中位数、众数、平均数等知识,熟练掌握基本概念以及运用公式求出平均数和方差是解题的关键.22、(1)-;(2)->-2.5【分析】(1)易得OA=OB,求得OB的长可得A所表示的数;(2)求出所表示的数与-2.5进行比较可得答案.【详解】解:(1)由题意得:OB=OA==,点所表示的数为-,(2)5<2.5=6.25<2.5->-2.5【点睛】本题主要考查勾股定理及负数大小的比较.23、(1)2;(2);(3);(4).【分析】(1)分母不变,分子相加,即可得到答案;(2)根据分式的乘法运算法则,即可得到答案;(3)先通分,然后分子分母进行因式分解,进行约分,即可得到答案;(4)先通分,计算括号内的运算,然后计算分式乘法,即可得到答案.【详解】解:(1);(2);(3)原式;(4)原式.【点睛】本题考查了分式的混合运算,以及分式的化简,解题的关键是熟练掌握分式的混合运算的运算法则进行求解.24、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.【分析】(2)可得(a−2)2+=2,由非负数的性质可得出答案;

(2)分两种情况:∠BAC=92°或∠ABC=92°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;

(3)①如图3,过点C作CL⊥y轴于点L,则CL=2=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;

②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=2.【详解】(2)∵a2−4a+4+=2,

∴(a−2)2+=2,

∵(a-2)2≥2,≥2,

∴a-2=2,2b+2=2,

∴a=2,b=-2;

(2)由(2)知a=2,b=-2,

∴A(2,2),B(-2,2),

∴OA=2,OB=2,

∵△ABC是直角三角形,且∠ACB=45°,

∴只有∠BAC=92°或∠ABC=92°,

Ⅰ、当∠BAC=92°时,如图2,

∵∠ACB=∠ABC=45°,

∴AB=CB,

过点C作CG⊥OA于G,

∴∠CAG+∠ACG=92°,

∵∠BAO+∠CAG=92°,

∴∠BAO=∠ACG,

在△AOB和△BCP中,

∴△AOB≌△CGA(AAS),

∴CG=OA=2,AG=OB=2,

∴OG=OA-AG=2,

∴C(2,2),

Ⅱ、当∠ABC=92°时,如图2,

同Ⅰ的方法得,C(2,-2);

即:满足条件的点C(2,2)或(2,-2)

(3)①如图3,由(2)知点C(2,-2),

过点C作CL⊥y轴于点L,则CL=2=BO,

在△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论