2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题含解析_第1页
2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题含解析_第2页
2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题含解析_第3页
2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题含解析_第4页
2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省醴陵市第三中学数学八年级第一学期期末统考试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题是假命题的是()A.直角都相等 B.对顶角相等 C.同位角相等 D.两点之间,线段最短2.若分式有意义,则满足的条件是()A.或-2 B. C. D.3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.4.将多项式分解因式,结果正确的是()A. B.C. D.5.用科学记数法表示0.00000085正确的是()A.8.5×107 B.8.5×10-8 C.8.5×10-7 D.0.85×10-86.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+47.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或8.下列命题中,为真命题的是()A.直角都相等 B.同位角相等 C.若,则 D.若,则9.下列多项式中,能分解因式的是()A.m2+n2 B.-m2-n2 C.m2-4m+4 D.m2+mn+n210.若等腰三角形的周长为18cm,其中一边长为8cm,则该等腰三角形的底边长为()A.8cm B.2cm或8cm C.5cm D.8cm或5cm二、填空题(每小题3分,共24分)11.若关于x的分式方程=1的解是非负数,则m的取值范围是_____.12.如图,平面直角坐标系中有点.连接,以为圆心,以为半径画弧,交轴于点,连接,以为圆心,以为半径画弧,交轴于点,连接,以为圆心,以为半径画弧,交轴于点,按照这样的方式不断在坐标轴上确定点的位置,那么点的坐标是__________.13.在平面直角坐标系中,点关于轴的对称点的坐标是__________.14.等腰三角形的一个角是110°,则它的底角是_____.15.分式的最简公分母是_____________.16.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是______.17.如图,在与中,,,,若,则的度数为________.18.如图,在中,,是边上两点,且所在的直线垂直平分线段,平分,,则的长为________.三、解答题(共66分)19.(10分)已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC,求证:BC=DE20.(6分)已知点A(a+2b,1),B(7,a﹣2b).(1)如果点A、B关于x轴对称,求a、b的值;(2)如果点A、B关于y轴对称,求a、b的值.21.(6分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,现有两种进货方案①冰箱30台,空调70台;②冰箱50台,空调50台,那么该商店要获得最大利润应如何进货?22.(8分)甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.求甲、乙仓库原来各存粮多少吨?23.(8分)计算或化简:(1)(2x-3y2)-2÷(x-2y)3;(2);(3).24.(8分)先化简,再求值:b(b﹣2a)﹣(a﹣b)2,其中a=﹣3,b=﹣.25.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,每套型一体机的价格比每套型一体机的价格多万元,且用万元恰好能购买套型一体机和套型一体机.(1)列二元一次方程组解决问题:求每套型和型一体机的价格各是多少万元?(2)由于需要,决定再次采购型和型一体机共套,此时每套型体机的价格比原来上涨,每套型一体机的价格不变.设再次采购型一体机套,那么该市至少还需要投入多少万元?26.(10分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△,使它与△关于轴对称;(2)点的对称点的坐标为;(3)求△的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据真假命题的概念,可知直角都相等是真命题,对顶角相等是真命题,两点之间,线段最短,是真命题,同位角相等的前提是两直线平行,故是假命题.故选C.2、B【分析】根据分式有意义的条件:分母不能为0进行计算即可.【详解】∵分式有意义,∴a-1≠0,∴a≠1.故选:B.【点睛】考查了分式有意义的条件,解题关键是熟记:当分母不为0时,分式有意义.3、A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项符合题意;

B、不是轴对称图形,故本选项不符合题意;

C、不是轴对称图形,故本选项不符合题意;

D、不是轴对称图形,故本选项不符合题意.

故选A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【解析】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.00000085用科学记数法表示为8.5×10-1.

故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、A【分析】根据图象信息一一判断即可解决问题.【详解】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.【点睛】此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题的关键,属于中考常考题.7、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8、A【分析】根据直角、同位角的性质,平方与不等式的性质依次分析即可.【详解】A.直角都相等90°,所以此项正确;B.两直线平行,同位角相等,故本选项错误;C.若,则或,故本选项错误;D.若,则,本项正确,故选A.【点睛】本题考查的是命题与定理,熟知各项性质是解答此题的关键.9、C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A、m2+n2不能分解因式,本选项不符合题意;B、-m2-n2不能分解因式,本选项不符合题意;C、,能分解因式,所以本选项符合题意;D、m2+mn+n2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.10、B【分析】由于长为8cm的边可能是腰,也可能是底边,故应分两种情况讨论.【详解】解:由题意知,可分两种情况:①当腰长为8cm时,则另一腰长也为8cm,底边长为18-8×2=2(cm),∵8-2<8<8+2即6<8<10,∴可以组成三角形∴当腰长为8cm时,底边长为2cm;②当底边长为8cm时,腰长为(18-8)÷2=5(cm),∵5-5<8<5+5,即0<8<10,∴可以组成三角形∴底边长可以是8cm.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点也是解题的关键.二、填空题(每小题3分,共24分)11、m≥﹣4且m≠﹣1【解析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【详解】去分母得:m+1=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣1.故答案为:m≥﹣4且m≠﹣1【点睛】本题考查分式方程的解,解一元一次不等式,解决此题时一定要注意解分式方程时分式的分母不能为0.12、【分析】利用勾股定理和坐标轴上点的坐标的特征和变化规律,逐步求出至的坐标.【详解】解:,,,,,,……根据变化规律可得,,.【点睛】本题主要考查勾股定理与平面直角坐标系里点的坐标的规律变化,理解题意,找到变化规律是解答关键.13、【分析】点P的横坐标的相反数为所求的点的横坐标,纵坐标不变为所求点的纵坐标.【详解】解:点关于y轴的对称点的横坐标为-4;纵坐标为2;∴点关于y轴的对称点的坐标为,故答案为:.【点睛】用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.14、35°.【分析】题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.【详解】解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.【点睛】本题考查等腰三角形的性质,关键在于熟练掌握性质,分类讨论.15、【解析】试题分析:找分母各项的系数的最小公倍数,和相同字母的次数最高的项,故最简公分母为.考点:最简公分母16、2【解析】试题分析:依题意得,2a-1+(-a+2)=0,解得:a=-1.则这个数是(2a-1)2=(-3)2=2.故答案为2.点睛:本题考查了平方根的性质.根据正数有两个平方根,它们互为相反数建立关于a的方程是解决此题的关键.17、40°【分析】先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出的度数.【详解】解:在Rt△ABC与Rt△DEF中,

∵∠B=∠E=90°,AC=DF,AB=DE,

∴Rt△ABC≌Rt△DEF(HL)

∴∠D=∠A=50°,

∴∠DFE=90°-∠D=90°-50°=40°.

故答案为:40°.【点睛】此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.18、1【分析】根据CE垂直平分AD,得AC=CD,再根据等腰三角形的三线合一,得∠ACE=∠ECD,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC,由此即可求得答案.【详解】∵CE垂直平分AD,∴AC=CD=1,∴∠ACE=∠ECD,∵CD平分∠ECB,∴∠ECD=∠DCB,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴∠B=90°-∠A=30°,∴∠DCB=∠B,∴BD=CD=1,故答案为:1.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,直角三角形两锐角互余等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共66分)19、证明见解析【分析】根据由两个角和其中一角的对边相等的两个三角形全等证明△ABC≌△CDE,由全等三角形的性质即可得到BC=DE.【详解】证明:∵AB∥EC,∴∠A=∠ECA,在△ABC和△CDE中∴△ABC≌CDE(AAS),∴BC=DE.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即对应角相等、对应边相等).20、(1);(2).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.(2)根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:(1)∵点A、B关于x轴对称,∴,解得:;(2))∵点A、B关于y轴对称,∴,解得:.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.21、(1)每台电冰箱与空调的进价分别是2000元,1600元;(2)该商店要获得最大利润应购进冰箱30台,空调70台【分析】(1)根据每台电冰箱的进价比每台空调的进价多400元,商店用6000元购进电冰箱的数量与用4800元购进空调的数量相等,可以列出相应的分式方程,从而可以解答本题;(2)根据题意和(1)中的结果,可以计算出两种方案下获得的利润,然后比较大小,即可解答本题.【详解】解:(1)设每台空调的进件为x元,则每台电冰箱的进件为(x+400)元,,解得,x=1600,经检验,x=1600是原分式方程的解,则x+400=2000元,答:每台电冰箱与空调的进价分别是2000元,1600元;(2)当购进冰箱30台,空调70台,所得利润为:(2100﹣2000)×30+(1750﹣1600)×70=13500(元),当购进冰箱50台,空调50台,所得利润为:(2100﹣2000)×50+(1750﹣1600)×50=12500(元),∵13500>12500,∴该商店要获得最大利润应购进冰箱30台,空调70台.【点睛】本题考查分式方程的应用,解答本题的关键是明确题意,利用分式方程的知识解答,注意分式方程一定要检验.22、甲仓库原来存粮240吨,乙仓库原来存粮210吨.【分析】设甲仓库原来存粮x吨,乙仓库原来存粮y吨,根据“甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨”,即可得出关于x,y的二元一次方程组,解方程组即可得出结论.【详解】解:设甲仓库原来存粮x吨,乙仓库原来存粮y吨,根据题意得:,解得:.答:甲仓库原来存粮240吨,乙仓库原来存粮210吨.【点睛】本题考查了二元一次方程组的应用,设出未知数,找准等量关系,正确列出二元一次方程组是解题的关键.23、(1);(2);(3)【分析】(1)先利用负整数指数幂和整数指数幂的运算法则运算,再利用单项式乘除单项式法则计算即可得到结果;(2)通分并利用同分母分式的减法法则计算,再利用平方差公式展开合并同类项即可;(3)将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果即可.【详解】(1)(2x-3y2)-2÷(x-2y)3;(2);(3).【点睛】本题主要考查负整数指数幂的运算和分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.24、﹣a2,﹣1【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论