弹性力学仿真软件:MSC Nastran:谐波响应分析技术教程_第1页
弹性力学仿真软件:MSC Nastran:谐波响应分析技术教程_第2页
弹性力学仿真软件:MSC Nastran:谐波响应分析技术教程_第3页
弹性力学仿真软件:MSC Nastran:谐波响应分析技术教程_第4页
弹性力学仿真软件:MSC Nastran:谐波响应分析技术教程_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

弹性力学仿真软件:MSCNastran:谐波响应分析技术教程1弹性力学仿真软件:MSCNastran:谐波响应分析1.1MSC_Nastran软件概述MSC_Nastran是一款广泛应用于航空航天、汽车、船舶、电子等行业的高级有限元分析软件。它由MSCSoftware公司开发,能够进行线性和非线性静力分析、动力学分析、热分析、优化设计等多种工程分析。MSC_Nastran以其强大的计算能力和高度的灵活性,成为工程分析领域的标准工具之一。1.1.1功能特点线性与非线性分析:支持各种材料模型和接触条件,能够精确模拟结构在复杂载荷下的行为。动力学分析:包括模态分析、瞬态分析、谐波响应分析等,适用于研究结构在动态载荷下的响应。热分析:能够模拟热传导、对流和辐射,分析结构的温度分布和热应力。优化设计:提供结构优化功能,帮助工程师在满足性能要求的同时,实现轻量化设计。1.1.2谐波响应分析谐波响应分析是MSC_Nastran中的一种动力学分析方法,主要用于研究结构在周期性载荷作用下的动态响应。这种分析方法特别适用于预测结构在特定频率下的振动特性,如共振频率、振幅和相位等。1.2谐波响应分析的基本概念1.2.1基本原理谐波响应分析基于傅里叶变换理论,将时间域的周期性载荷转换为频率域的载荷。通过求解结构在不同频率下的响应,可以得到结构的频率响应函数(FRF)。频率响应函数描述了结构在特定频率下的输出与输入之间的关系,包括振幅和相位信息。1.2.2分析流程模型建立:使用有限元方法建立结构模型,定义材料属性、几何形状和边界条件。载荷定义:在模型上施加周期性载荷,载荷可以是力、压力或位移等。频率设置:定义分析的频率范围和步长,通常包括结构的共振频率。求解:运行谐波响应分析,软件将计算结构在每个频率点的响应。结果分析:分析频率响应函数,识别结构的共振频率、振幅和相位特性。1.2.3示例:谐波响应分析的输入文件$MSCNastran输入文件示例

CEND

BEGINBULK

GRID,1,,0.,0.,0.

GRID,2,,1.,0.,0.

GRID,3,,1.,1.,0.

GRID,4,,0.,1.,0.

CQUAD4,1,1,2,3,4,0.1,0.1,0.1,0.1

FORCE,100,1,0.,1000.*SIN(2.*310.*TIME)

SOL,111

EIGRL,1,1,0.,1000.,100.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0

#弹性力学仿真软件:MSCNastran:谐波响应分析-前处理

##建立模型

在进行谐波响应分析之前,首先需要在MSCNastran中建立模型。这包括定义几何形状、选择合适的单元类型以及确定模型的复杂度。例如,对于一个简单的梁结构,我们可以使用CBEAM单元来建立模型。

```markdown

###示例:建立一个简单的梁模型

1.定义节点:使用GRID卡片定义梁的两端节点。

2.定义单元:使用CBEAM卡片连接两端节点,形成梁单元。

3.定义属性:使用PBEAM卡片定义梁的截面属性。1.3定义材料属性材料属性的定义对于准确的谐波响应分析至关重要。在MSCNastran中,我们使用MAT1卡片来定义各向同性材料的属性,如弹性模量、泊松比和密度。###示例:定义钢材材料属性

MAT1,1,30000000,0.3,0.283MAT1:材料定义卡片类型。1:材料ID。30000000:弹性模量(单位:psi)。0.3:泊松比。0.283:密度(单位:lb/in^3)。1.4网格划分网格划分是将连续体离散化为有限个单元的过程,对于谐波响应分析,合理的网格密度可以提高计算精度和效率。在MSCNastran中,网格划分通常在前处理器中完成,如Patran。###示例:在Patran中进行网格划分

1.选择合适的单元类型(如SHELL181)。

2.设置网格尺寸:在“MeshControl”中设置适当的网格尺寸。

3.执行网格划分:点击“Mesh”按钮,软件将自动进行网格划分。1.5施加边界条件和载荷边界条件和载荷的正确施加是确保谐波响应分析结果准确性的关键。在MSCNastran中,边界条件通常使用SPC卡片定义,载荷则使用FORCE、MOMENT或ACCEL卡片定义。###示例:施加固定边界条件和正弦载荷

####固定边界条件

SPC,1,1,2,3

-`SPC`:边界条件卡片类型。

-`1`:节点ID。

-`1,2,3`:分别表示在X、Y、Z方向上施加约束。

####正弦载荷

FORCE,1,1,0,0,1000,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

#谐波响应分析设置

##选择谐波响应分析类型

在进行谐波响应分析时,首先需要确定分析类型。MSCNastran提供了多种谐波响应分析选项,包括线性谐波分析、非线性谐波分析、随机谐波分析等。线性谐波分析是最常见的类型,适用于线性系统在正弦激励下的响应分析。非线性谐波分析则考虑了系统的非线性特性,适用于非线性系统。随机谐波分析用于处理随机激励下的系统响应。

###示例:线性谐波分析设置

在MSCNastran中,可以通过在输入文件中添加`SOL111`来指定进行线性谐波响应分析。以下是一个简单的输入文件示例,展示了如何设置线性谐波分析:

```nastran

SUBCASE1

SOL=111

EIGRL=1

LOAD=1

DISP=ALL

STRESS=ALL在这个例子中,SUBCASE1定义了分析实例,SOL=111指定了进行线性谐波响应分析,EIGRL=1引用了模态分析的输出,LOAD=1引用了加载条件,而DISP=ALL和STRESS=ALL则要求输出所有节点的位移和应力。1.6定义频率范围和步长谐波响应分析的关键参数之一是频率范围和步长。频率范围定义了分析的最低和最高频率,而步长则决定了频率点的密度。在MSCNastran中,频率范围和步长可以通过FREQ或FREQ1等卡片来定义。1.6.1示例:定义频率范围和步长以下是一个使用FREQ1卡片来定义频率范围和步长的例子:FREQ1,1,100,10在这个例子中,FREQ1卡片定义了从1Hz到100Hz的频率范围,步长为10Hz。这意味着分析将在1Hz、11Hz、21Hz等频率点进行,直到100Hz。1.7设置求解器参数谐波响应分析的求解器参数包括模态数量、阻尼模型、求解方法等。这些参数对于获得准确的分析结果至关重要。在MSCNastran中,可以通过EIGRL或EIGRB卡片来设置模态分析的参数,通过DAMPING卡片来定义阻尼模型。1.7.1示例:设置求解器参数以下是一个设置求解器参数的例子,包括模态数量和阻尼模型:EIGRL,1,100

DAMPING=0.05在这个例子中,EIGRL,1,100卡片指定了模态分析的频率范围从1Hz到100Hz,并要求计算该范围内的所有模态。DAMPING=0.05则定义了整个系统的阻尼比为5%。1.7.2综合示例:谐波响应分析设置下面是一个综合示例,展示了如何在MSCNastran中设置谐波响应分析,包括分析类型、频率范围和步长、以及求解器参数:SUBCASE1

SOL=111

EIGRL=1

LOAD=1

DISP=ALL

STRESS=ALL

FREQ1,1,100,10

EIGRL,1,100

DAMPING=0.05在这个综合示例中,我们首先定义了谐波响应分析的类型和输出要求,然后设置了频率范围和步长,最后指定了模态数量和阻尼模型。这些设置共同构成了一个完整的谐波响应分析案例。通过以上示例,我们可以看到在MSCNastran中进行谐波响应分析的基本步骤和设置方法。这些设置需要根据具体的应用场景和工程需求进行调整,以确保分析结果的准确性和可靠性。2后处理与结果分析2.1查看模态结果模态分析是谐波响应分析的基础,通过模态分析,我们可以获得结构的固有频率和振型。在MSCNastran中,模态结果通常包含在.f06或.op2文件中,这些文件包含了详细的模态信息,包括振型、频率、阻尼比等。2.1.1振型可视化振型可视化是理解模态结果的关键步骤。我们可以使用MSCNastran的后处理工具,如Patran或HyperMesh,来查看和分析振型。这些工具允许我们以动画的形式展示振型,帮助我们直观地理解结构在不同频率下的振动特性。2.1.2频率和振型分析在模态结果中,频率和振型是最重要的信息。频率表示结构的自然振动频率,而振型则描述了结构在该频率下的振动形态。通过分析频率和振型,我们可以确定结构的振动特性,这对于设计和优化结构以避免共振非常重要。2.2谐波响应结果可视化谐波响应分析用于评估结构在周期性载荷作用下的动态响应。在MSCNastran中,谐波响应结果通常包括位移、速度、加速度和应力等信息,这些信息可以帮助我们了解结构在不同频率下的响应特性。2.2.1位移响应可视化位移响应是谐波响应分析中最直观的结果之一。我们可以通过后处理工具,如Patran或HyperMesh,将位移响应以动画或等值线的形式展示出来。这有助于我们识别结构中位移最大的区域,从而判断结构的稳定性。2.2.2应力响应分析应力响应分析是评估结构强度的重要步骤。在谐波响应分析中,我们可以得到结构在不同频率下的应力分布。通过分析这些结果,我们可以确保结构在预期的载荷条件下不会发生破坏。2.3结果解释与评估在完成模态和谐波响应分析后,解释和评估结果是至关重要的。这包括识别关键频率、评估结构的动态特性、检查结构的稳定性以及确保结构满足设计要求。2.3.1关键频率识别关键频率是指结构的固有频率,这些频率可能与外部载荷的频率相匹配,导致共振。识别关键频率有助于我们设计结构以避免这些频率,从而提高结构的稳定性和安全性。2.3.2结构稳定性检查结构稳定性检查是评估结构在动态载荷作用下是否能够保持其形状和位置不变的过程。通过分析谐波响应结果,我们可以检查结构在不同频率下的位移和应力,以确保结构的稳定性。2.3.3设计要求评估最后,我们需要评估结构是否满足设计要求。这包括检查结构的动态特性是否符合预期,以及结构在动态载荷作用下的响应是否在可接受的范围内。通过与设计规范进行比较,我们可以确保结构的安全性和可靠性。2.3.4示例:使用Patran查看模态结果#Patran脚本示例:加载模态结果并可视化振型

#假设我们已经运行了模态分析,并生成了.f06文件

#加载Patran

importpatran

#创建一个新的Patran会话

patran_session=patran.PatranSession()

#加载模态结果文件

patran_session.load_file("modal_results.f06")

#显示第一个振型

patran_session.show_mode_shape(mode_number=1)

#动画显示振型

patran_session.animate_mode_shape(mode_number=1,speed=1.0)

#保存动画为视频文件

patran_session.save_animation("mode_shape_animation.mp4")在上述示例中,我们使用Patran的PythonAPI加载了模态结果文件,并显示了第一个振型。然后,我们以动画的形式展示了振型,并将动画保存为视频文件。这有助于我们直观地理解结构的振动特性。2.3.5示例:使用HyperMesh分析谐波响应结果#HyperMesh脚本示例:加载谐波响应结果并分析位移响应

#假设我们已经运行了谐波响应分析,并生成了.op2文件

#加载HyperMesh

importhypermesh

#创建一个新的HyperMesh会话

hm_session=hypermesh.HyperMeshSession()

#加载谐波响应结果文件

hm_session.load_file("harmonic_response.op2")

#显示位移响应

hm_session.show_displacement_response()

#分析位移响应,找出位移最大的区域

max_displacement_region=hm_session.analyze_displacement_response()

#输出位移最大的区域信息

print("位移最大的区域:",max_displacement_region)在上述示例中,我们使用HyperMesh的PythonAPI加载了谐波响应结果文件,并显示了位移响应。然后,我们分析了位移响应,找出了位移最大的区域。这有助于我们评估结构的稳定性,并进行必要的设计优化。通过上述步骤,我们可以有效地进行后处理与结果分析,确保结构设计的安全性和可靠性。在实际应用中,我们可能需要根据具体的设计要求和结构特性,调整分析参数和后处理设置,以获得更准确的结果。3案例研究3.1单自由度系统的谐波响应分析在弹性力学中,单自由度系统(SingleDegreeofFreedom,SDOF)的谐波响应分析是理解结构在周期性载荷作用下行为的基础。此类分析通常涉及一个质量块,通过弹簧与地面连接,且受到阻尼的影响。当系统受到正弦波形式的外力作用时,其响应也将是正弦波形式,但相位和振幅可能与输入力不同。3.1.1原理考虑一个SDOF系统,其动力学方程可以表示为:m其中:-m是质量,-c是阻尼系数,-k是弹簧刚度,-F0是外力的幅值,-ω是外力的角频率,-t3.1.2内容对于SDOF系统的谐波响应分析,我们首先需要确定系统的固有频率和阻尼比。然后,通过求解上述方程,我们可以得到系统的位移、速度和加速度响应。3.1.3示例假设我们有一个SDOF系统,其中m=10kg,c=2Nsimportnumpyasnp

importmatplotlib.pyplotasplt

#系统参数

m=10#质量,kg

c=2#阻尼系数,Ns/m

k=100#弹簧刚度,N/m

F0=50#外力幅值,N

omega=2*np.pi#角频率,rad/s

#计算固有频率和阻尼比

wn=np.sqrt(k/m)#固有角频率

zeta=c/(2*m*wn)#阻尼比

#计算响应

t=np.linspace(0,10,1000)#时间向量

x=F0/k*np.sin(omega*t)/(1-(omega/wn)**2)#位移响应

#绘制结果

plt.figure()

plt.plot(t,x)

plt.title('单自由度系统的位移响应')

plt.xlabel('时间(s)')

plt.ylabel('位移(m)')

plt.grid(True)

plt.show()此代码示例展示了如何计算并可视化SDOF系统在正弦波外力作用下的位移响应。3.2多自由度系统的谐波响应分析多自由度系统(MultipleDegreeofFreedom,MDOF)的谐波响应分析更为复杂,因为它涉及到多个质量块和连接它们的弹簧与阻尼器。MDOF系统的动力学方程是一个矩阵方程,通常需要数值方法来求解。3.2.1原理MDOF系统的动力学方程可以表示为:M其中:-M是质量矩阵,-C是阻尼矩阵,-K是刚度矩阵,-X是位移向量,-Ft3.2.2内容在MDOF系统中,我们首先需要建立系统的质量、阻尼和刚度矩阵。然后,通过数值方法,如模态分析或直接积分法,求解系统的响应。3.2.3示例假设我们有一个由两个质量块组成的MDOF系统,每个质量块通过弹簧和阻尼器与地面以及彼此相连。我们可以通过模态分析来求解系统的谐波响应。importnumpyasnp

fromscipy.linalgimporteig

#系统参数

m1=5#质量1,kg

m2=10#质量2,kg

c1=1#阻尼系数1,Ns/m

c2=2#阻尼系数2,Ns/m

k1=100#弹簧刚度1,N/m

k2=200#弹簧刚度2,N/m

F0=50#外力幅值,N

omega=2*np.pi#角频率,rad/s

#建立质量、阻尼和刚度矩阵

M=np.array([[m1,0],[0,m2]])

C=np.array([[c1+c2,-c2],[-c2,c2]])

K=np.array([[k1+k2,-k2],[-k2,k2]])

#求解固有频率和模态

eigenvalues,eigenvectors=eig(K,M)

wn=np.sqrt(eigenvalues)#固有角频率

#计算响应

#这里简化处理,仅展示固有频率和模态的计算

#实际响应计算需要进一步的模态叠加或直接积分法

#输出结果

print("固有角频率:",wn)

print("模态向量:")

print(eigenvectors)此代码示例展示了如何计算MDOF系统的固有频率和模态向量,为后续的谐波响应分析提供基础。3.3复杂结构的谐波响应分析对于复杂结构,如飞机、桥梁或建筑物,谐波响应分析需要考虑结构的三维几何、材料属性以及可能的非线性效应。这种分析通常在专业仿真软件中进行,如MSCNastran,它能够处理大型有限元模型。3.3.1原理复杂结构的谐波响应分析基于有限元方法(FiniteElementMet

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论