2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题含解析_第1页
2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题含解析_第2页
2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题含解析_第3页
2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题含解析_第4页
2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省驻马店市泌阳县八年级数学第一学期期末学业质量监测模拟试题量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知图中的两个三角形全等,则∠α等于()A.72° B.60° C.58° D.48°2.下列实数中,是无理数的是()A. B. C. D.3.同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于()A.25° B.50° C.65° D.130°4.等于()A. B. C. D.5.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.6.用计算器依次按键,得到的结果最接近的是()A. B. C. D.7.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°8.下列各式中与是同类二次根式的是()A. B. C. D.9.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.10.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2 B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2 D.(2x﹣y)(2x+y)=2x2﹣y2二、填空题(每小题3分,共24分)11.分解因式:_________.12.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.13.若,,则______.14.用不等式表示x的3倍与5的和不大于10是____________________;15.点关于轴对称的点的坐标是__________.16.分解因式6xy2-9x2y-y3=_____________.17.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是_____.18.若2m=a,32n=b,m,n为正整数,则22m+15n=(结果用含a、b的式子表示)三、解答题(共66分)19.(10分)如图,直线y=3x+5与x轴相交于点A,与y轴相交于点B,(1)求A,B两点的坐标;(2)过点B作直线BP与x轴相交于点P,且使OP=3OA,求的面积.20.(6分)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形.(2)画一个底边长为4,面积为8的等腰三角形.(3)画一个面积为5的等腰直角三角形.(4)画一个边长为2,面积为6的等腰三角形.21.(6分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.(1)求点D的坐标;(2)求直线的解析表达式;(3)求△ADC的面积;(4)在直线上存在一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.22.(8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?23.(8分)如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.(1)线段(用含的式子表示),点的坐标为(用含的式子表示),的度数为.(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.(3)①当为何值时,有.②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.24.(8分)(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=1.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).25.(10分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;(2)设,.①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.2、B【分析】根据无理数的概念:无限不循环小数逐一判断即可得出答案.【详解】A.是有理数,不符合题意;B.是无理数,符合题意;C.是有理数,不符合题意;D.是有理数,不符合题意;故选:B.【点睛】本题主要考查无理数,掌握无理数的概念及常见的类型是解题的关键.3、C【分析】根据等腰三角形的性质即可得到结论.【详解】解:∵OA=OB=AB,∴OA′=OB′=A′B′,∵AB=A′B′,∴OA=OB′,∵∠AOA′=50°,∴∠AOB′=180°﹣50°=130°,∵OC⊥AB′,∴∠COB′==65°,故选C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4、D【解析】根据负整数指数幂的运算法则计算即可.【详解】解:.故选:D.【点睛】本题考查了负整数指数幂的运算法则,属于应知应会题型,熟知负整数指数幂的运算法则是解题关键.5、D【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.6、C【分析】利用计算器得到的近似值即可得到答案.【详解】解:,与最接近的是2.1.故选:C.【点睛】本题主要考查计算器的使用,解题的关键是掌握计算器上常用的按键的功能和使用顺序.7、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x

∵AC=DC=DB

∴∠CAD=∠CDA=2x

∴∠ACB=180°-2x-x=105°

解得x=25°.

故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.8、C【分析】先将选项中的二次根式化为最简二次根式,然后根据同类二次根式的被开方数相同判断即可得出答案.【详解】解:A、与被开方数不相同,不是同类二次根式,故本选项错误;B、与被开方数不相同,不是同类二次根式,故本选项错误;C、与的被开方数相同,是同类二次根式,故本选项正确;D、与被开方数不相同,不是同类二次根式,故本选项错误;故选:C【点睛】本题考查了同类二次根式,解题的关键是二次根式的化简.9、A【解析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.10、C【分析】根据完全平方公式和平方差公式求出每个式子的结果,再判断即可.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选C.【点睛】本题考查了完全平方公式和平方差公式的应用,注意:完全平方公式:,平方差公式:(a+b)(a-b)=a-b.二、填空题(每小题3分,共24分)11、【分析】先将原式写成平方差公式的形式,然后运用平方差公式因式分解即可.【详解】解:===.【点睛】本题主要考查了运用平方差公式因式分解,将原式写成平方差公式的形式成为解答本题的关键.12、【解析】试题分析:解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.13、15【分析】根据同底数幂乘法法则来求即可.【详解】解:3×5=15【点睛】本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.14、3x+5≤1【分析】直接利用x的3倍,即3x,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.

故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.15、(2,-1)【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;16、-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.17、∠A、∠B、∠C的角平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在∠A、∠B、∠C的角平分线的交点处.故答案为:∠A、∠B、∠C的角平分线的交点处.【点睛】本题考查三角形三条角平分线交点的性质,解题的关键是理解掌握三角形三条角平分线交点的性质.18、【分析】同底数幂相乘,底数不变,指数相加【详解】原式=.故答案为考点:同底数幂的计算三、解答题(共66分)19、(1);(2)或【分析】(1)根据A、B点的坐标特征解答即可;(2)由OA=、OB=5,得到OP=3,分当点P在A点的左侧和右侧两种情况运用待定系数法解答即可.【详解】解:(1)已知直线y=3x+5,令x=0,得y=5,令y=0,3x+5=0,得点A坐标,点B坐标(0,5);(2)由(1)知A(-,B(0,5),∴OA=、OB=5,∵OP=3OA∴OP=5,OA=,若点P在A点左侧,则点P坐标为(-5,0),AP=OP-OA=;若点P在A点右侧,则点P坐标为(5,0),AP=OP+OA=.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,掌握待定系数法和一次函数图像上点的特征是解答本题的关键.20、(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析.【解析】(1)利用三角形面积求法以及直角三角形的性质画即可;(2)利用三角形面积求法以及等腰三角形的性质画出即可.(3)利用三角形面积求法以及等腰直角三角形的性质画出即可;(4)利用三角形面积求法以及等腰三角形的性质画出即可.【详解】解:(1)如图(1)所示:(2)如图(2)所示:(3)如图(3)所示;(4)如图(4)所示.【点睛】此题主要考查了等腰三角形的性质、等腰直角三角形的性质以及作图;熟练掌握等腰三角形的性质是关键.21、(1)D(1,0);(2);(3);(4)P1(8,6)或P2(0,-6).【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,根据△ADP的面积是△ADC面积的2倍,可得点P的坐标..【详解】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)∵△ADP与△ADC底边都是AD,△ADP的面积是△ADC面积的2倍,

∴△ADC高就是点C到直线AD的距离的2倍,

即C纵坐标的绝对值=6,则P到AD距离=6,

∴点P纵坐标是±6,

∵y=1.5x-6,y=6,

∴1.5x-6=6,

解得x=8,

∴P1(8,6).

∵y=1.5x-6,y=-6,

∴1.5x-6=-6,

解得x=0,

∴P2(0,-6)

综上所述,P1(8,6)或P2(0,-6).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.22、小刚同学测量的结果正确,理由见解析.【分析】由勾股定理的逆定理证出△BCP是直角三角形,∠BCP=90°,得出∠ACB=90°,再由勾股定理求出AB即可.【详解】解:小刚同学测量的结果正确,理由如下:∵PA=14m,PB=13m,PC=5m,BC=12m,∴AC=PA﹣PC=9m,PC2+BC2=52+122=169,PB2=132=169,∴PC2+BC2=PB2,∴△BCP是直角三角形,∠BCP=90°,∴∠ACB=90°,∴AB===15(m).【点睛】本题考查了勾股定理和勾股定理的逆定理的综合运用;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23、(1),(t,t),45°;(2)△POE周长是一个定值为1,理由见解析;(3)①当t为(5-5)秒时,BP=BE;②能,PE的长度为2.【分析】(1)由勾股定理得出BP的长度;易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.

(2)延长OA到点F,使得AF=CE,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.再证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;

(3)①证明Rt△BAP≌Rt△BCE(HL).得出AP=CE.则PO=EO=5-t.由等腰直角三角形的性质得出PE=PO=(5-t).延长OA到点F,使得AF=CE,连接BF,证明△FAB≌△ECB(SAS).得出FB=EB,∠FBA=∠EBC.证明△FBP≌△EBP(SAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程(5-t)=2t.解得t=5-5即可;

②由①得:当BP=BE时,AP=CE.得出PO=EO.则△POE的面积=OP2=5,解得OP=,得出PE=OP-=2即可.【详解】解:(1)如图1,

由题可得:AP=OQ=1×t=t,

∴AO=PQ.

∵四边形OABC是正方形,

∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.

∴BP=,

∵DP⊥BP,

∴∠BPD=90°.

∴∠BPA=90°-∠DPQ=∠PDQ.

∵AO=PQ,AO=AB,

∴AB=PQ.

在△BAP和△PQD中,,

∴△BAP≌△PQD(AAS).

∴AP=QD,BP=PD.

∵∠BPD=90°,BP=PD,

∴∠PBD=∠PDB=45°.

∵AP=t,

∴DQ=t

∴点D坐标为(t,t).

故答案为:,(t,t),45°.

(2)△POE周长是一个定值为1,理由如下:

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=1.

∴△POE周长是定值,该定值为1.

(3)①若BP=BE,

在Rt△BAP和Rt△BCE中,,

∴Rt△BAP≌Rt△BCE(HL).

∴AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO=5-t.

∵∠POE=90°,

∴△POE是等腰直角三角形,

∴PE=PO=(5-t).

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,,

∴△FAB≌△ECB(SAS).

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP=CE+AP.

∴EP=t+t=2t.

∴(5-t)=2t.

解得:t=5-5,

∴当t为(5-5)秒时,BP=BE.

②△POE的面积能等于△POE周长的一半;理由如下:

由①得:当BP=BE时,AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO.

则△POE的面积=OP2=5,

解得:OP=,

∴PE=OP==2;

即△POE的面积能等于△POE周长的一半,此时PE的长度为2.【点睛】此题考查四边形综合题目,正方形的性质,等腰三角形的性质,全等三角形的性质与判定,勾股定理,证明三角形全等是解题的关键.24、【问题原型】3;【初步探究】△BCD的面积为a2;【简单应用】△BCD的面积为a2.【分析】问题原型:如图1中,△ABC≌△BDE,就有DE=BC=1.进而由三角形的面积公式得出结论;初步探究:如图2中,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【详解】解:问题原型:如图1中,如图2中,过点D作BC的垂线,与BC的延长线交于点E,∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE=1.∵S△BCDBC•DE,∴S△BCD=3.故答案为:3.初步探究:△BCD的面积为a2.理由:如图2中,过点D作BC的垂线,与BC的延长线交于点E.,∴∠BED=∠ACB=90°∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°,∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE=a.∵S△BCDBC•DE,∴S△BCDa2;简单应用:如图3中,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,,∴∠AFB=∠E=90°,BF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论