版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省句容市崇明中学数学八年级第一学期期末达标检测模拟试题测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.直角三角形中,有两条边长分别为3和4,则第三条边长是()A.1 B.5 C. D.5或2.下列分式中和分式的值相等的是()A. B.C. D.3.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.14.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()册数
0
1
2
3
4
人数
3
13
16
17
1
A.3,3 B.3,2 C.2,3 D.2,25.在中,,用尺规作图的方法在上确定一点,使,根据作图痕迹判断,符合要求的是()A. B.C. D.6.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A. B. C. D.7.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是()A.2,4,6 B.4,6,8 C.3,4,5 D.6,8,108.如果把分式中的a、b同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.扩大为原来的2倍 C.缩小到原来的 D.扩大为原来的4倍.9.若x2mx9是一个完全平方式,那么m的值是()A.9 B.18 C.6 D.610.七年级一班同学根据兴趣分成五个小组,并制成了如图所示的条形统计图,若制成扇形统计图,第1小组对应扇形圆心角的度数为()A. B. C. D.11.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1,则P1表示的数是()A.-2 B.-2 C.1-2 D.2-112.如图,中,,,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.已知点的坐标为,点的坐标为,且点与点关于轴对称,则________.14.若,,,则,,的大小关系用"连接为________.15.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如,此题设“,”,得方程,解得,.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需周才能完成,设甲公司单独完成需周,乙公司单独完成需周,则得到方程_______.利用整体思想,解得__________.16.如图,在平面直角坐标系中,已如点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A处,并按的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是__________.17.如图1,在探索“如何过直线外一点作已知直线的平行线”时,小颖利用两块完全相同的三角尺进行如下操作:如图2所示,(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,直线AB即为所求,则小颖的作图依据是________.18.已知函数y=3xn-1是正比例函数,则n的值为_____.三、解答题(共78分)19.(8分)问题发现:如图,在中,,为边所在直线上的动点(不与点、重合),连结,以为边作,且,根据,得到,结合,得出,发现线段与的数量关系为,位置关系为;(1)探究证明:如图,在和中,,,且点在边上滑动(点不与点、重合),连接.①则线段,,之间满足的等量关系式为_____;②求证:;(2)拓展延伸:如图,在四边形中,.若,,求的长.20.(8分)已知如图1,在中,,,点是的中点,点是边上一点,直线垂直于直线于点,交于点.(1)求证:.(2)如图2,直线垂直于直线,垂足为点,交的延长线于点,求证:.21.(8分)取一副三角板按图拼接,固定三角板,将三角板绕点依顺时针方向旋转一个大小为的角得到,图所示.试问:当为多少时,能使得图中?说出理由,连接,假设与交于与交于,当时,探索值的大小变化情况,并给出你的证明.22.(10分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.23.(10分)阅读与思考:因式分解----“分组分解法”:分组分解法指通过分组分解的方式来分解用提公因式法和公式法无法直接分解的多项式,比如,四项的多项式一般按照“两两”分组或“三一”分组进行分组分解.分析多项式的特点,恰当的分组是分组分解法的关键.例1:“两两”分组:我们把和两项分为一组,和两项分为一组,分别提公因式,立即解除了困难.同样.这道题也可以这样做:例2:“三一”分组:我们把,,三项分为一组,运用完全平方公式得到,再与-1用平方差公式分解,问题迎刃而解.归纳总结:用分组分解法分解因式的方法是先恰当分组,然后用提公因式法或运用公式法继续分解.请同学们在阅读材料的启发下,解答下列问题:(1)分解因式:①;②(2)若多项式利用分组分解法可分解为,请写出,的值.24.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.25.(12分)如图,分别是4×4的正方形网格,请只用无刻度的直尺完成下列作图:(1)在图1中,A,B是网格的格点,请以AB为边作一个正方形;(2)在图2中,A是网格的格点,请以A为一个顶点,B,C,D三点分别在网格的格点上,在网格内作一个面积最大的正方形ABCD.26.计算题:化简:先化简再求值:,其中
参考答案一、选择题(每题4分,共48分)1、D【分析】分第三边为直角边或斜边两种情况,根据勾股定理分别求第三边.【详解】当第三边为直角边时,4为斜边,第三边==;当第三边为斜边时,3和4为直角边,第三边==5,故选:D.【点睛】本题考查了勾股定理.关键是根据第三边为直角边或斜边,分类讨论,利用勾股定理求解.2、C【分析】根据分式的基本性质进行判断.【详解】解:A、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;B、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;C、分式的分子、分母同时乘以不为零的因式(x-3),分式的值不变,所以该分式与分式的值相等.故本选项正确;D、分式的分子、分母变化的倍数不一样,所以该分式与分式的值不相等.故本选项错误;故选:C.【点睛】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.3、B【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选B.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.4、B【解析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是1,故这组数据的众数为1.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).∴中位数是按第25、26名学生读数册数的平均数,为:2.故选B.5、D【分析】根据,可得AD=BD,进而即可得到答案.【详解】∵,又∵,∴AD=BD,∴点D是线段AB的垂直平分线与BC的交点,故选D.【点睛】本题主要考查尺规作垂直平分线以及垂直平分线的性质定理,掌握尺规作垂直平分线是解题的关键.6、D【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.7、D【分析】根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理,得
(x-2)2+x2=(x+2)2,
x2-4x+4+x2=x2+4x+4,
x2-8x=0,
x(x-8)=0,
解得x=8或0(0不符合题意,应舍去),
所以它的三边是6,8,1.故选:D.【点睛】本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.8、B【分析】依题意分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可【详解】分别用2a和2b去代换原分式中的a和b,得,可见新分式是原分式的2倍.故选:B.【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.9、D【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9是一个完全平方式,
∴x2+mx+9=(x±3)2,
∴m=±6,
故选D.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10、C【分析】根据扇形圆心角的度数为本组人数与总人数之比,再乘以360°进行计算即可.【详解】由题意可得,第1小组对应扇形圆心角的度数为,故选C.【点睛】本题考查条形图和扇形图的相关计算,解题的关键是理解扇形圆心角与条形图中人数的关系.11、C【分析】首先利用勾股定理计算出QP的长,进而可得出QP1的长度,再由Q点表示的数为1可得答案.【详解】根据题意可得QP==2,∵Q表示的数为1,∴P1表示的数为1-2.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.12、B【分析】设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.【详解】解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
∴∠B+19°=x+14°,
∴∠B=x-5°,
∵AB=AC,
∴∠C=∠B=x-5°,
∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
∵AD=DE,
∴∠DEA=∠DAE=x+9°,
在△ADE中,由三角形内角和定理可得
x+x+9°+x+9°=180°,
解得x=54°,即∠ADE=54°,
∴∠DAE=63°
故选:B.【点睛】本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据点与点关于轴对称,求出m和n的值即可.【详解】∵点与点关于轴对称,∴A,B两点的横坐标不变,纵坐标变成相反数,∴,∴,故答案为:1.【点睛】本题是对坐标系中点对称的考查,熟练掌握点关于对称轴的变化规律是解决本题的关键.14、【分析】根据零指数幂得出a的值,根据平方差公式运算得出b的值,根据积的乘方的逆应用得出c的值,再比较大小即可.【详解】解:∵,,∴.故答案为:.【点睛】本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a,b,c的值.15、【分析】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得分式方程组,换元后得关于a和b的二元一次方程组,解得a和b,再根据倒数关系可得x和y的值,从而问题得解.【详解】设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:,设,原方程化为:,解得:,∴,故答案为:;.【点睛】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.16、(1,0)【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA上从点D向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.17、内错角相等,两直线平行【分析】首先对图形进行标注,从而可得到∠2=∠2,然后依据平行线的判定定理进行判断即可.【详解】解:如图所示:由平移的性质可知:∠2=∠2.又∵∠2=∠2,∴∠2=∠2.∴EF∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题主要考查的是平行线的判定、平移的性质、尺规作图,依据作图过程发现∠2=∠2是解题的关键.18、1【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【详解】解:∵函数y=3xn﹣1是正比例函数,∴n﹣1=1,则n=1.故答案是:1.【点睛】本题主要考查正比例函数的概念,掌握正比例函数的概念是解题的关键.三、解答题(共78分)19、(1)①BC=CE+CD;②见解析;(2)AD=6.【分析】(1)①根据题中示例方法,证明△BAD≌△CAE,得到BD=CE,从而得出BC=CE+CD;②根据△BAD≌△CAE,得出∠ACE=45°,从而得到∠BCE=90°,则有DE2=CE2+CD2,再根据可得结论;(2)过点A作AG⊥AD,使AG=AD,连接CG、DG,可证明△BAD≌△CAG,得到CG=BD,在直角△CDG中,根据CD的长求出DG的长,再由DG和AD的关系求出AD.【详解】解:(1)①如图2,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,故答案为:BC=BD+CD=CE+CD.②∵△BAD≌△CAE,∴∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如图3,过点A作AG⊥AD,使AG=AD,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=13,在Rt△CGD中,∠GDC=90°,,∵△DAG是等腰直角三角形,∴,∴AD==6.【点睛】本题是四边形的综合题,考查的是全等三角形的判定和性质、勾股定理,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【详解】(1)∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG.又∵BF⊥CE,∴∠CBG+∠BCF=90°.又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,∵,∴△AEC≌△CGB(ASA),∴AE=CG;(2)∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC.在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.21、(1)15°;(2)的大小不变,是,证明见解析.【分析】(1)由得到,即可求出;(2)的大小不变,是,由,,,,即可利用三角形内角和求出答案.【详解】当为时,,理由:由图,若,则,,所以,当为时,.注意:学生可能会出现两种解法:第一种:把当做条件求出为,第二种:把为当做条件证出,这两种解法都是正确的.的大小不变,是证明:,,,,,,,所以,的大小不变,是.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.22、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【点睛】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个三角形全等,可得到对应边相等.23、(1)①(a﹣b)(a+3);②(x﹣y+3)(x﹣y﹣3);(1)a=4,b=1.【分析】(1)①选用“两两分组”法分解因式即可;②选用“三一分组”法分解因式即可;(1)利用多项式乘法法则将展开,然后对应多项式即可求出答案.【详解】解:(1)①②(1)∵比较系数可得a=4,b=1.【点睛】本题主要考查因式分解和多项式乘法,掌握因式分解法是解题的关键.24、(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 你信不?性格可决定运气
- 新型数据基础设施发展研究报告-推动全闪存数据中心建设助力数字经济高质量发展
- 吉首大学《国际商务谈判》2021-2022学年第一学期期末试卷
- 吉林艺术学院《字体设计》2021-2022学年第一学期期末试卷
- 吉林艺术学院《文化政策法规》2021-2022学年第一学期期末试卷
- 吉林艺术学院《乐理Ⅱ》2021-2022学年第一学期期末试卷
- 2024年供应商付款优惠协议书模板
- 小型汽车租用协议书范文范本
- 吉林师范大学《音频处理与视频剪辑》2021-2022学年第一学期期末试卷
- 河道洗砂承包协议书范文模板
- 2024年中国吐司面包市场调查研究报告
- 期中素养综合测试 2024-2025学年北师大版九年级数学上册
- 期中阶段测试卷(试题)2024-2025学年统编版语文五年级上册
- 企业级IT系统监理服务合同
- 2024全球智能家居市场深度研究报告
- 20242025七年级上册科学浙教版新教材第1章第2节科学测量第2课时体积测量讲义教师版
- 6《人大代表为人民》(第1课时)(教学设计)2024-2025学年统编版道德与法治六年级上册
- 2024-2030年中国汽车铝合金(OE)行业市场发展趋势与前景展望战略分析报告
- 2025届高考英语写作素材积累之航空航天+词汇句型清单
- 2024年国家知识产权局专利局专利审查协作湖北中心招聘100人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024-2030年中国增塑剂行业市场发展现状及前景趋势与投资研究报告
评论
0/150
提交评论