云南省昆明市4月份2025届数学八上期末检测模拟试题含解析_第1页
云南省昆明市4月份2025届数学八上期末检测模拟试题含解析_第2页
云南省昆明市4月份2025届数学八上期末检测模拟试题含解析_第3页
云南省昆明市4月份2025届数学八上期末检测模拟试题含解析_第4页
云南省昆明市4月份2025届数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市4月份2025届数学八上期末检测模拟试题题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.我市某中学九年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:捐款(元)51015202530人数361111136问该班同学捐款金额的众数和中位数分别是()A.13,11 B.25,30 C.20,25 D.25,202.关于函数的图像,下列结论正确的是()A.必经过点(1,2) B.与x轴交点的坐标为(0,-4)C.过第一、三、四象限 D.可由函数的图像平移得到3.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.64.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A.3 B.5 C.4 D.不确定5.下列代数式中,分式有______个,,,,,,,,A.5 B.4 C.3 D.26.现有两根木棒长度分别是厘米和厘米,若再从下列木棒中选出一根与这两根组成一个三角形(根木棒首尾依次相接),应选的木棒长度为()A.厘米 B.厘米 C.厘米 D.厘米7.下列代数式中,属于分式的是()A.﹣3 B. C.﹣a﹣b D.﹣8.若,则下列式子正确的是()A. B. C. D.9.中国首列商用磁浮列车平均速度为,计划提速,已知从地到地路程为360,那么提速后从甲地到乙地节约的时间表示为()A. B. C. D.10.如图,以两条直线l1,l2的交点坐标为解的方程组是()A. B. C. D.11.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动直角尺,使直角尺两边相同的刻度分别与M,N重合(即CM=CN).此时过直角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HL B.SAS C.SSS D.ASA12.小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是()A.200元 B.250元 C.300元 D.350二、填空题(每题4分,共24分)13.小刚准备测量一段河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为_______.14.已知,y=(m+1)x3﹣|m|+2是关于x的一次函数,并且y随x的增大而减小,则m的值为_____.15.观察下列关于自然数的式子:,,,,,…,根据上述规律,则第个式子化简后的结果是_____.16.下列图形是由一连串直角三角形演化而成,其中.则第3个三角形的面积______;按照上述变化规律,第(是正整数)个三角形的面积______.17.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段18.已知直角三角形的两边长分别为3、1.则第三边长为________.三、解答题(共78分)19.(8分)我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?20.(8分)已知:如图,AD垂直平分BC,D为垂足,DM⊥AB,DN⊥AC,M、N分别为垂足.求证:DM=DN.21.(8分)阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为,,所与,与互为有理化因式.(1)的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:,用上述方法对进行分母有理化.(3)利用所需知识判断:若,,则的关系是.(4)直接写结果:.22.(10分)如图所示,在等腰三角形ABC中,AB=AC,AD是△ABC的角平分线,E是AC延长线上一点.且CE=CD,AD=DE.(1)求证:ABC是等边三角形;(2)如果把AD改为ABC的中线或高、其他条件不变),请判断(1)中结论是否依然成立?(不要求证明)23.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?24.(10分)一辆卡车装满货物后,高4m、宽2.4m,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?25.(12分)如图所示,若MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.26.化简:.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据众数和中位数的定义即可得到结果.【详解】解:∵25是这组数据中出现次数最多的数据,∴25是这组数据的众数;∵已知数据是由小到大的顺序排列,第25个和第26个数都是1,∴这组数据的中位数为1.故选D.【点睛】本题考查的是众数和中位数,熟练掌握基本概念是解题的关键.2、C【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵当x=1时,y=2-4=-2≠2,∴图象不经过点(1,2),故本选项错误;

B、点(0,-4)是y轴上的点,故本选项错误;

C、∵k=2>0,b=-4<0,∴图象经过第一、三、四象限,故本选项正确;

D、函数y=-2x的图象平移得到的函数系数不变,故本选项错误.

故选:C.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,b<0时函数图象经过一、三、四象限是解答此题的关键.3、D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.考点:1.众数;2.中位数.4、C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=1.

故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.5、B【分析】根据判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,对各选项判断即可.【详解】解:解:根据分式的定义,可知分式有:,,,,共4个,

故选:B.【点睛】本题考查分式的定义,能熟记分式的定义的内容是解题的关键,注意:分式的分母中含有字母.6、B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.求出第三边的范围就可以求解.【详解】应选取的木棒的长的范围是:,

即.

满足条件的只有B.

故选:B.【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.7、B【分析】根据分式的定义:形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式,逐一判断即可.【详解】解:A.﹣3不是分式,故本选项不符合题意;B.是分式,故本选项符合题意;C.﹣a﹣b不是分式,故本选项不符合题意;D.﹣不是分式,故本选项不符合题意.故选B.【点睛】此题考查的是分式的判断,掌握分式的定义是解决此题的关键.8、B【分析】根据不等式的性质判断即可.【详解】解:由,不能判断与的大小,A错误;由,可知,B正确;由,可知,∴,C错误;由,可知,D错误.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.9、A【分析】列式求得提速前后从甲地到乙地需要的时间,进一步求差得出答案即可.【详解】解:由题意可得:==故选A.【点睛】此题考查列代数式,掌握行程问题中的基本数量关系是解决问题的关键.10、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.11、C【分析】根据题中的已知条件确定有三组边对应相等,由此证明△OMC≌△ONC(SSS),即可得到结论.【详解】在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠MOC=∠NOC,∴射线OC即是∠AOB的平分线,故选:C.【点睛】此题考查了全等三角形的判定及性质,比较简单,注意利用了三边对应相等,熟记三角形全等的判定定理并解决问题是解题的关键.12、C【解析】试题分析:先求出总支出,再根据用于食物上的支出占总支出的30%即可得出结论.解:∵用于衣服上的支是200元,占总支出的20%,∴总支出==1000(元),∴用于食物上的支出=1000×30%=300(元).故选C.考点:扇形统计图.二、填空题(每题4分,共24分)13、米【分析】河水的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【详解】如图,在Rt△ABC中,AC=1.5cm.CD=AB-BC=3.5m.

设河深BC=xm,则AB=3.5+x米.

根据勾股定理得出:

∵AC3+BC3=AB3

∴1.53+x3=(x+3.5)3

解得:x=3.

【点睛】本题考查了勾股定理在实际生活中的应用,根据勾股定理可以把求线段的长的问题转化为解方程得问题是解题的关键.14、﹣1.【分析】根据一次函数定义可得3﹣|m|=1,解出m的值,然后再根据一次函数的性质可得m+1<0,进而可得确定m的取值.【详解】解:∵y=(m+1)x3﹣|m|+1是关于x的一次函数,∴3﹣|m|=1,∴m=±1,∵y随x的增大而减小,∴m+1<0,∴m<﹣1,∴m=﹣1,故答案为:﹣1.【点睛】此题主要考查了一次函数的性质和定义,关键是掌握一次函数的自变量的次数为1,一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15、【分析】由前几个代数式可得,减数是从2开始连续偶数的平方,被减数是从2开始连续自然数的平方的4倍,由此规律得出答案即可.【详解】∵①②③④⑤∴第个代数式为:.故答案为:.【点睛】本题考查了数字的变化规律,找出数字之间的运算规律,利用规律解决问题是解题的关键.16、【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵,∴,,,,,,…,∴第(是正整数)个三角形的面积.故答案为:,.【点睛】此题主要考查的是等腰直角三角形的性质以及勾股定理的运用和利用规律的探查解决问题.17、13.【解析】∵CD沿CB平移7cm至EF∴EF//CD,CF=7∴BF=BC-CF=5,EF=CD=4,∠EFB=∠C∵AB=AC,∴∠B=∠C∴EB=EF=4∴C考点:平移的性质;等腰三角形的性质.18、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.三、解答题(共78分)19、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;【分析】(1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;【详解】(1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;【点睛】本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.20、见解析.【分析】根据垂直平分线的性质得到AC=AB,再利用等腰三角形的性质得到AD是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD垂直平分BC,∴AC=AB,即是等腰三角形,∴AD平分∠BAC,∵DM⊥AB,DN⊥AC,∴DM=DN.【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.21、(1);(2);(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式,化简即可;(3)将分母有理化,通过结果即可判断;(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵,∴的有理化因式是;(2)=;(3)∵,,∴a和b互为相反数;(4)====,故原式的值为.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22、(1)见解析;(2)成立【分析】(1)根据等腰三角形的性质可得,角平分线AD同时也是三角形ABC底边BC的高,即∠ADC=90°.再加上已知条件可推出∠DAC=30°,即可知三角形ABC是等边三角形.(2)在等腰三角形ABC中,如果其他条件不变,则AD同时是角平分线、中线及高,所以(1)中结论仍然成立.【详解】(1)证明:∵CD=CE,∴∠E=∠CDE,

∴∠ACB=2∠E.

又∵AD=DE,∴∠E=∠DAC,

∵AD是△ABC的角平分线,

∴∠BAC=2∠DAC=2∠E,

∴∠ACB=∠BAC,∴BA=BC.

又∵AB=AC,∴AB=BC=AC.

∴△ABC是等边三角形.

(2)解:当AD为△ABC的中线或高时,结论依然成立.理由:当AD为△ABC的中线时,,,由(1)的结论,易证ABC是等边三角形;当AD为△ABC的高时,,,由(1)的结论,易证ABC是等边三角形;【点睛】此题主要考查了等边三角形的判定,综合利用了等腰三角形和直角三角形的性质.同时要掌握等腰三角形中底边的高、中线和角平分线重合的性质.23、(1)这项工程的规定时间是2天;(2)该工程的费用为180000元.【分析】(1)设这项工程的规定时间是x天,然后根据“甲、乙两队合做15天的工作量+甲队单独做5天的工作量=1”列方程即可;(2)先求出甲、乙两队合做完成需要的时间,然后乘每天的施工费用之和即可得出结论.【详解】(1)设这项工程的规定时间是x天,根据题意得:()×15+=1.解得:x=2.经检验x=2是方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论