版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省仪征市第三中学八年级数学第一学期期末学业水平测试试题平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A. B.C. D.2.一个长方形的长是2xcm,宽比长的一半少4cm,若将这个长方形的长和宽都增加3cm,则该长方形的面积增加了().A.9cm2 B.(2x2x3)cm2 C.7x3cm2 D.9x3cm23.如图,点是中、的角平分线的交点,,则的度数是()A. B. C. D.4.用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm5.下列选项中的整数,与最接近的是()A.2 B.3 C.4 D.56.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,11 C.12,5,6 D.3,4,57.下列因式分解结果正确的是()A. B.C. D.8.如图,折叠直角三角形纸片的直角,使点落在上的点处,已知,,则的长是()A.12 B.10 C.8 D.69.若a+b=3,ab=2,则a2+b2的值是()A.2.5 B.5 C.10 D.1510.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).12.若,则_____.13.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.14.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为_____.15.在平面直角坐标系中,矩形如图放置,动点从出发,沿所示方向运动,每当碰到矩形的边时反弹,每次反弹的路径与原路径成度角(反弹后仍在矩形内作直线运动),当点第次碰到矩形的边时,点的坐标为;当点第次碰到矩形的边时,点的坐标为__________.16.若,则=_____.17.如图,已知点M(-1,0),点N(5m,3m+2)是直线AB:右侧一点,且满足∠OBM=∠ABN,则点N的坐标是_____.18.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为_____万元.三、解答题(共66分)19.(10分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.20.(6分)一个四位数,记千位和百位的数字之和为a,十位和个位的数字之和为b,如果a=b,那么称这个四位数为“心平气和数”例如:1625,a=1+6,b=2+5,因为a=b,所以,1625是“心平气和数”.(1)直接写出:最小的“心平气和数”是,最大的“心平气和数”;(2)将一个“心平气和数”的个位与十位的数字交换位置,同时将百位与千位的数字交换,称交换前后的这两个“心平气和数”为一组“相关心平气和数”.例如:1625与6152为一组“相关心平气和数”,求证:任意的一组“相关心平气和数”之和是11的倍数.(3)求千位数字是个位数字的3倍,且百位数字与十位数字之和是14的倍数的所有“心平气和数”.21.(6分)一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前到达目的地,设前一个小时的行驶速度为(1)直接用的式子表示提速后走完剩余路程的时间为(2)求汽车实际走完全程所花的时间.(3)若汽车按原路返回,司机准备一半路程以的速度行驶,另一半路程以的速度行驶(),朋友提醒他一半时间以的速度行驶,另一半时间以的速度行驶更快,你觉得谁的方案更快?请说明理由.22.(8分)如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.23.(8分)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?24.(8分)解下列方程组:(1)(2)25.(10分)已知一次函数与的图象如图所示,且方程组的解为,点的坐标为,试确定两个一次函数的表达式.26.(10分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系.2、D【分析】根据题意列出算式,然后利用整式混合运算的法则进行化简即可.【详解】解:长方形的长是2xcm,则宽为(x-4)cm,由题意得:,∴该长方形的面积增加了cm2,故选:D.【点睛】本题考查了整式混合运算的实际应用,解题关键是能够根据题意列出代数式.3、D【分析】根据点P是△ABC中∠ABC、∠ACB的角平分线的交点,得出∠ABP+∠ACP=∠PBC+∠PCB,利用三角形的内角和等于180°,可求出∠ABC+∠ACB的和,从而可以得到∠PBC+∠PCB,则∠BPC即可求解.【详解】解:∵点P是△ABC中∠ABC、∠ACB的角平分线的交点∴∠ABP=∠PBC,∠ACP=∠PCB∴∠ABP+∠ACP=∠PBC+∠PCB∵∠A=118°∴∠ABC+∠ACB=62°∴∠PBC+∠PCB=62°÷2=31°∴∠BPC=180°-31°=149°故选:D.【点睛】本题主要考查的是三角形角平分线的性质以及三角形的内角和性质,正确的掌握以上两个性质是解题的关键.4、B【解析】试题分析:分已知边4cm是腰长和底边两种情况讨论求解.4cm是腰长时,底边为16-4×2=8,∵4+4=8,∴4cm、4cm、8cm不能组成三角形;4cm是底边时,腰长为×(16-4)=6cm,4cm、6cm、6cm能够组成三角形;综上所述,它的腰长为6cm.故选B.考点:1.等腰三角形的性质;2.三角形三边关系.5、C【分析】根据,及3.52即可解答.【详解】解:∵9<13<16,∴,∵,∴,则最接近的是4,故选:C.【点睛】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6、D【分析】根据三角形的三边关系进行分析判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A选项中,因为3+4<8,所以A中的三条线段不能组成三角形;B选项中,因为5+6=11,所以B中的三条线段不能组成三角形;C选项中,因为5+6<12,所以C中的三条线段不能组成三角形;D选项中,因为3+4>5,所以D中的三条线段能组成三角形.故选D.【点睛】判断三条线段能否组成三角形,根据“三角形三边间的关系”,只需看较短两条线段的和是否大于最长线段即可,“是”即可组成三角形,“否”就不能组成三角形.7、D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A、原式,故本选项不符合题意;B、原式,故本选项不符合题意;C、原式,故本选项不符合题意;D、原式,故本选项符合题意,故选:D.【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法.8、A【分析】由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.【详解】:∵△ADE与△ADC关于AD对称,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C=90°,∴∠BED=90°,∵∠B=30°,∴BD=2DE,∵BC=BD+CD=36,∴36=2DE+DE,∴DE=12;故答案为:A.【点睛】本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.9、B【详解】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2-2ab=32-2×2=1.故选B.10、D【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出△ABD≌△ACE,由全等三角形的对应边相等得到BD=CE;②由△ABD≌△ACE得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确;故选D.【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题(每小题3分,共24分)11、【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.
∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,
∴A′D==2(m),BD=1+0.6-0.4=1.2(m),
∴在直角△A′DB中,A′B=(m),故答案是:.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.12、-4【解析】直接利用完全平方公式得出a的值.【详解】解:∵,∴故答案为:【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.13、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【点睛】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.14、27【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把代入多项式后进行移项整理是解题关键.15、(8,3)【分析】根据反弹的方式作出图形,可知每6次碰到矩形的边为一个循环组依次循环,用2019除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,当点P第2次碰到矩形的边时,点P的坐标为:(7,4);
当点P第6次碰到矩形的边时,点P的坐标为(0,3),
经过6次碰到矩形的边后动点回到出发点,
∵2019÷6=336…3,
∴当点P第2019次碰到矩形的边时为第337个循环组的第3次碰到矩形的边,
∴点P的坐标为(8,3).
故答案为:(8,3).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次碰到矩形的边为一个循环组依次循环是解题的关键.16、【解析】通过设k法计算即可.【详解】解:∵,∴设a=2k,b=3k(k≠0),则,故答案为:.【点睛】本题考查比例的性质,比较基础,注意设k法的使用.17、【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,
作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,
∴∠BOP=∠BPQ=∠PRQ=90°,
∴∠BPO=∠PQR,
∵OA=OB=4,
∴∠OBA=∠OAB=45°,
∵M(-1,0),
∴OP=OM=1,
∴BP=BM,
∴∠OBP=∠OBM=∠ABN,
∴∠PBQ=∠OBA=45°,
∴PB=PQ,
∴△OBP≌△RPQ(AAS),
∴RQ=OP=1,PR=OB=4,
∴OR=5,
∴Q(5,1),∴直线BN的解析式为y=−x+4,将N(5m,3m+2)代入y=−x+4,得3m+2=﹣×5m+4解得m=,∴N.故答案为:【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.18、1【分析】用二季度的营业额÷二季度所占的百分比即可得到结论.【详解】由扇形图可以看出二季度所占的百分比为,所以该商场全年的营业额为万元,答:该商场全年的营业额为1万元.故答案为1.【点睛】本题考查扇形统计图,正确的理解扇形统计图中的信息是解题的关键.三、解答题(共66分)19、(1)见解析;(2)AE=1,BE=1.【分析】(1)连接DB,DC,证明Rt△BED≌Rt△CFD,再运用全等三角形的性质即可证明;(2).先证明△AED≌△AFD得到AE=AF,设BE=x,则CF=x,利用线段的和差即可完成解答.【详解】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,即AE=AB﹣BE=5﹣1=1.【点睛】本题主要考查三角形全等的判定和性质,掌握三角形全等的判定方法和灵活运用全等三角形的性质是解题本题的关键20、(1)1001,1;(2)见解析;(2)2681和4【分析】(1)因为是求最小的“心平气和数”和最大的“心平气和数”,所以一个必须以1开头的四位数,一个是以9开头的四位数,不难得到1001和1这两个答案.(2)可以设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,根据题意列出一组“相关心平气和数”之和,利用提取公因式进行因式分解就可以了,即可证明得任意的一组“相关心平气和数”之和是11的倍数.(2)先讨论出千位与个位数字分别为2,6,9和1,2,2,也可以讨论出,百位数字与十位数字之和只能是3,进而得到最后两组符合题意的答案.【详解】解:(1)最小的“心平气和数”必须以1开头,而1000显然不符合题意,所以最小的只能是1001,最大的“心平气和数”必须以9开头,后面的数字要尽可能在0﹣9这九个数字中选最大的,所以最大的“心平气和数”一定是1.故答案为:1001;1.(2)证明:设千位和百位的数字之和为m,十位和个位的数字之和为m,千位数字为a,十位数字为b,所以个位数字为(m﹣b),百位数字为(m﹣a).依题意可得,这组“相关心平气和数”之和为:(m﹣b)+10b+100(m﹣a)+1000a+b+10(m﹣b)+100a+1000(m﹣a),=11(m﹣b)+11b+1100a+1100(m﹣a)=11(m﹣b+b+100a+100m﹣100a)=11×101m,因为m为整数,所以11×101m是11的倍数,所以任意的一组“相关心平气和数”之和是11的倍数.(2)设个位数字为x,则千位数字为2x,显然1≤2x≤9,且x为正整数,故x=1,2,2.又因为百位数字与十位数字之和是3的倍数,而百位数字与十位数字之和最大为18,所以百位数字与十位数字之和只能是3.故可设十位数字为n则百位数字为3﹣n,依题意可得,x+n=3﹣n+2x,整理得,n﹣x=7,故,当x=1时,n=8,当x=2时n=9,当x=2时,n=10(不合题意舍去),综上所述x=1,n=8时“心平气和数”为2681,x=2,n=9时,“心平气和数”为4.所以满足题中条件的所有“心平气和数”为2681和4.【点睛】本题考查整数的有关知识,熟练掌握数的组成、倍数和约数等概念是解题关键.21、(1);(2)小时;(3)故朋友方案会先到达【分析】(1)根据题意即可用的式子表示提速后走完剩余路程的时间;(2)根据题意可以列出相应的分式方程,求出x,即可求出汽车实际走完全程所花的时间;(3)设出总路程和两种方案所用时间,作比后利用不等式的性质比较两种方案所用时间的大小.【详解】(1)用的式子表示提速后走完剩余路程的时间为故答案为;(2)由题意可得,+1+=,解得,x=60经检验x=60时,1.5x≠0,∴x=60是原分式方程的解,即原计划行驶的速度为60km/h.∴汽车实际走完全程所花的时间为+1=小时;(3)设总路程s,司机自己的方案时间为t1,朋友方案时间t2,则t1=∴t2=,∴因为m≠n,所以,(m+n)2>4mn,所以>1,所以,>1.t1>t2.故朋友方案会先到达.【点睛】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,注意要验根.22、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=9
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024股权转让协议范例
- 2024统编版七年级语文上册《整本书阅读》专项练习题及答案
- 商场保安合同2024年
- 商场租赁合作协议样本
- 全面战略合作协议撰写要点
- 交流活动具体安排表
- 2024物业服务委托协议
- 建行个人住房装修贷款合同
- 合作经营协议书范本样本
- 四川省攀枝花市(2024年-2025年小学五年级语文)统编版期末考试(下学期)试卷及答案
- 2024年供应链管理竞赛考试题库
- 三年级语文下册第二单元群文阅读教学设计
- 习思想教材配套练习题 第七章 社会主义现代化建设的教育、科技、人才战略
- led显示屏工艺流程
- 建设项目设计管理方案
- 第13课《警惕可怕的狂犬病》 课件
- 2024年届海南航空控股股份有限公司招聘笔试参考题库含答案解析
- 前程无忧在线测试题库及答案行测
- 仓库货物条码管理培训
- 第六章-中国早期社会学中的社区学派-《中国社会学史》必备
- 水产品质量安全知识讲座
评论
0/150
提交评论