版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省南康区八年级数学第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣5x+6=(x﹣2)(x﹣3)C.m2﹣2m﹣3=m(m﹣2)﹣3 D.m(a+b+c)=ma+mb+mc2.如图,在平面直角坐标系中,,,,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点处,并按…的规律绕在四边形的边上,则细线另一端所在位置的点的坐标是()A.(1,0) B.(1,1) C.(-1,1) D.(-1,-2)3.多边形每个外角为45°,则多边形的边数是()A.8 B.7 C.6 D.54.小亮对一组数据16,18,20,20,3■,34进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,但小亮依然还能准确获得这组数据的()A.众数 B.方差 C.中位数 D.平均数5.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.66.直线y=kx+b经过第二、三、四象限,那么()A., B., C., D.,7.下列多项式中,能分解因式的是()A.m2+n2 B.-m2-n2 C.m2-4m+4 D.m2+mn+n28.下列各式中,正确的是()A.=±4 B.±=4 C. D.9.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,1210.点(-2,5)关于x轴对称的点的坐标为()A.(2,-5) B.(-5,2) C.(-2,-5) D.(5,-2)11.下列计算结果为的是()A. B. C. D.12.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°二、填空题(每题4分,共24分)13.若,,则=_____.14.已知点P(1﹣a,a+2)关于y轴的对称点在第二象限,则a的取值范围是______.15.分解因式:.16.若规定用符号表示一个实数的整数部分,例如按此规定._______________________.17.比较大小:_____18.已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是____________.三、解答题(共78分)19.(8分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.(8分)已知,,求下列式子的值:(1);(2)21.(8分)如图,在中,,点、、分别在、、边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.22.(10分)某县教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机抽样调查了该县八年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出参加抽样调查的八年级学生人数,并将频数直方图补充完整.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生人,请你估计“活动时间不少于天”的大约有多少人?23.(10分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?24.(10分)如图,△ABC的三个顶点在边长为1的正方形网格中,已知A(3,3),B(﹣3,﹣3),C(1,﹣3).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标___________.25.(12分)在如图所示的直角坐标系中,(1)描出点、、,并用线段顺次连接点、、,得;(2)在直角坐标系内画出关于轴对称的;(3)分别写出点、点的坐标.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,逐个判断即可.【详解】解:A、不是因式分解,故本选不项符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。2、A【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),
∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,
∴绕四边形ABCD一周的细线长度为2+3+2+3=10,
2019÷10=201…9,
∴细线另一端在绕四边形第202圈的第9个单位长度的位置,
即细线另一端所在位置的点的坐标是(1,0).
故选:A.【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.3、A【分析】利用多边形外角和除以外角的度数即可【详解】解:多边形的边数:360÷45=8,故选A.【点睛】此题主要考查了多边形的外角,关键是掌握正多边形每一个外角度数都相等4、C【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断.【详解】解:这组数据的众数、方差和平均数都与第5个数有关,而这组数据的中位数为20与20的平均数,与第5个数无关.
故选:C.【点睛】本题考查了方差:它描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.5、D【解析】根据角平分线的性质进行求解即可得.【详解】∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=6,故选D.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.6、C【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】∵直线y=kx+b经过第二、四象限,∴k<0,又∵直线y=kx+b经过第三象限,即直线与y轴负半轴相交,∴b<0,故选C.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系:k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A、m2+n2不能分解因式,本选项不符合题意;B、-m2-n2不能分解因式,本选项不符合题意;C、,能分解因式,所以本选项符合题意;D、m2+mn+n2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.8、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.9、A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.10、C【分析】关于x轴对称点的横坐标相同,纵坐标互为相反数.【详解】解:点(-2,5)关于x轴对称的点的坐标是(-2,-5).
故选:C.【点睛】本题主要考查的是关于坐标轴对称的点的坐标特点,明确关于x轴对称点的横坐标相同,纵坐标互为相反数;关于y轴对称点的纵坐标相同,横坐标互为相反数是解题的关键.11、C【解析】根据幂的运算法则分别判断各选项是否正确即可解答.【详解】解:,故A错误;,故B错误;,故C正确;,故D错误;故选:C.【点睛】本题考查了幂的运算法则,准确计算是解题的关键.12、C【解析】试题分析:根据等腰三角形的三线合一的性质可直接得到AD平分∠BAC,AD⊥BC,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一二、填空题(每题4分,共24分)13、1【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵,,
∴.
故答案为:1.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.14、.【解析】试题分析:点P关于轴的对称点在第二象限,在P在第一象限,则考点:关于轴、轴对称的点的坐标.15、.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x再应用完全平方公式继续分解即可:【详解】故答案为:【点睛】考核知识点:因式分解.16、1【分析】先求出取值范围,从而求出其整数部分,即可得出结论.【详解】解:∵∴∴的整数部分为1∴1故答案为:1.【点睛】此题考查的是求无理数的整数部分,掌握实数比较大小的方法是解决此题的关键.17、<【分析】由题意先将分数通分,利用无理数的估值比较分子的大小即可.【详解】解:通分有,比较分子大小,则有<.故答案为:<.【点睛】本题考查无理数的大小比较,熟练掌握无理数与有理数比较大小的方法是解题关键.18、【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组,即是当代入方程组之后的方程组,则也是这一方程组的解,所以,∴.故答案是.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.三、解答题(共78分)19、(1)28,15;(2)108;(3)1.【解析】试题分析:(1)根据学校从三个年级随机抽取1名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据可以估计该校学生体育成绩不合格的人数.试题解析:(1)由题意和扇形统计图可得,a=1×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=1×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为108;(3)由题意可得,10×=1人,即该校三个年级共有10名学生参加考试,该校学生体育成绩不合格的有1人.考点:扇形统计图;用样本估计总体;统计与概率.20、(1)-4;(2)21【分析】(1)根据a,b的值求出a+b,ab的值,再根据a2+b2=(a+b)2-2ab,代入计算即可;(2)根据(1)得出的a+b,ab的值,再根据代入计算即可.【详解】(1)∵,,∴,,∴(2)由(1)得,,∴【点睛】此题考查了二次根式的化简求值,用到的知识点是二次根式的性质、完全平方公式、平方差公式,关键是对要求的式子进行化简.21、(1)见解析;(2)68°【分析】(1)根据条件即可证明△BDE≌△CEF,由全等三角形的性质得到DE=EF,即可得是等腰三角形;(2)先求出∠B的值,由(1)知∠BDE=∠CEF,由外角定理可得∠DEF=∠B.【详解】(1)证明:∵,∴∠B=∠C,在△BDE和△CEF中,,∴△BDE≌△CEF(SAS),∴DE=EF,则是等腰三角形;(2)解:∵,,∴∠B=∠C=,由(1)知△BDE≌△CEF,∴∠BDE=∠CEF,∵∠DEC=∠BDE+∠B,∴∠CEF+∠DEF=∠BDE+∠B,即∠BDE+∠DEF=∠BDE+∠B,∴∠DEF=∠B=68°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形的外角定理,解题的关键是熟练掌握全等三角形的判定与性质及角度的转换.22、(1)调查的初一学生人数200人;补图见解析;(2)中位数是4(天),众数是4(天);(3)估计“活动时间不少于5天”的大约有2700人.【分析】(1)由参加实践活动为2天的人数除以所占的百分比即可求出八年级学生总数,根据单位1减去其他的百分比求出a的值,由学生总数乘以活动实践是5天与7天的百分比求出各自的人数,补全统计图即可;(2)出现次数最多的天数为4天,故众数为4;将实践活动的天数按照从小到大顺心排列,找出最中间的两个天数,求出平均数即可得到中位数;(3)求出活动时间不少于4天的百分比之和,乘以6000即可得到结果.【详解】解:(1)调查的初一学生人数:20÷10%=200(人),“活动时间不少于5天”的人数为:200×(1-15%-10%-5%-15%-30%)=50(人),“活动时间不少于7天”的人数为:200×5%=10(人),补全统计图如下:(2)根据中位数的概念,中位数应是第100人的天数和101人的天数的平均数,即中位数是4(天),根据众数的概念,则众数是人数最多的天数,即众数是4(天);(3)估计“活动时间不少于5天”的大约有:(200﹣20﹣30﹣60)÷200×6000=2700(人).【点睛】本题考查了频率分布直方图和扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23、(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.24、(1)见解析;(2)(-3,3),(3,-3),(-1,-3);(3)(3,-1)【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新教材高考地理二轮专题复习单元综合提升练7农业生产与粮食安全含答案
- 山东省聊城市2024-2025学年高一上学期11月期中考试语文试题
- 河北省石家庄市裕华区多校2024-2025学年六年级上学期期中道德与法治试题
- 语文教学论教案 第五章 阅读教学
- 2024版电子产品交易合同范例
- 浙江省宁波市鄞州区十二校联考2024-2025学年九年级上学期10月月考语文试题(含答案)
- 高等教育培训合作协议
- 2024年房屋装修工程合同
- 转正版房屋转租协议
- 工程建设监理委托合同标准文本
- 决策理论7-多目标决策的基本概念课件
- 交互设计-课件
- 卫生监督典型案例分析(食品安全)-文本资料课件
- CAD培训课件(基础教程)
- 人工智能1第一章绪论课件
- 化工企业安全生产隐患排查检查表
- DB32T 4115-2021 钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程
- 中国风书香校园宣传主题班会PPT
- 妊娠剧吐课件
- 我们都是少先队员课件教学
- 平衡和协调能力的评定课件
评论
0/150
提交评论