上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题含解析_第1页
上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题含解析_第2页
上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题含解析_第3页
上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题含解析_第4页
上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市浦东新区2025届八年级数学第一学期期末质量跟踪监视试题试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.等腰三角形的一个角比另一个角的倍少度,则等腰三角形顶角的度数是()A. B.或 C.或 D.或或2.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或3.下列命题是假命题的是A.全等三角形的对应角相等 B.若||=-,则a>0C.两直线平行,内错角相等 D.只有锐角才有余角4.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是()A.①②③④ B.②③④⑤ C.①③④⑤ D.①②③⑤5.如图,在四边形中,,在上分别找到点M,N,当的周长最小时,的度数为()A.118° B.121° C.120° D.90°6.计算的结果是()A. B. C. D.7.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.= B.=C.= D.=8.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC9.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣210.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x元/斤,y元/斤,则可列方程为()A. B.C. D.11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的3倍,若设乘公交车平均每小时走千米,根据题意可列方程为()A. B.C. D.12.下列运算中,正确的是()A.(x3)2=x5 B.(﹣x2)2=x6 C.x3•x2=x5 D.x8÷x4=x2二、填空题(每题4分,共24分)13.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.14.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.15.如图,在△ABC中,∠A=90°,AB=2,AC=,以BC为斜边作等腰Rt△BCD,连接AD,则线段AD的长为_____.16.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.17.当x时,分式有意义.18.若,则以、为边长的等腰三角形的周长为______.三、解答题(共78分)19.(8分)我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?20.(8分)如图,,求的长,21.(8分)下面方格网的小方格是正方形,用无刻度直尺按要求作图:(1)在图1中作直角∠ABC;(2)在图2作AB的中垂线.22.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.23.(10分)某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):分组频数频率50.5~60.5200.0560.5~70.548△70.5~80.5△0.2080.5~90.51040.2690.5~100.5148△合计△1根据所给信息,回答下列问题:(1)补全频数分布表;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.24.(10分)如图,在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.25.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班1009811089103500乙班891009511997500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.26.分解因式:.

参考答案一、选择题(每题4分,共48分)1、D【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.2、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.3、B【分析】分别根据全等三角形的性质、绝对值的性质、平行线的性质和余角的性质判断各命题即可.【详解】解:A.全等三角形的对应角相等,是真命题;B.若||=-,则a≤0,故原命题是假命题;C.两直线平行,内错角相等,是真命题;D.只有锐角才有余角,是真命题,故选:B.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题真假的关键是要熟悉课本中的性质定理.4、D【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③根据②△CQB≌△CPA(ASA),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正确,∵△ACD≌△BCE,∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE②正确,∵△CQB≌△CPA,∴AP=BQ③正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④错误;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确.故选:D.5、A【分析】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.根据,得出.根据,,且,,可得,即可求出答案.【详解】如图,作A关于和的对称点,,连接,交于M,交于N,则的长度即为周长的最小值.∵,∴.∵,,且,,∴.故选:A.【点睛】本题考查两角度数和的求法,考查三角形性质的应用,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.6、D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:,故选D.【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.7、C【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数,,,,满足,,,即,故A、B一定成立;设,∴,,∴,,∴,故D一定成立;若则,则需,∵、不一定相等,故不能得出,故D不一定成立.故选:.【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.8、B【解析】试题解析:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB-AD=AC-AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.9、B【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.【点睛】本题考查了完全平方公式的应用,掌握完全平方公式的结构特征是解题的关键.10、A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子,再根据降价和涨价列出现在的式子,得到方程组.【详解】解:两个月前买菜的情况列式:,现在萝卜的价格下降了10%,就是,排骨的价格上涨了20%,就是,那么这次买菜的情况列式:,∴方程组可以列为.故选:A.【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.11、B【分析】关键描述语为:“乘坐私家车上学比乘坐公交车上学所需的时间少用了20分钟”;等量关系为:乘公交车所用时间=乘坐私家车所用时间+.【详解】解:设乘公交车平均每小时走x千米,根据题意可列方程为:.故选:B.【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解题关键.12、C【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.【详解】A.(x3)2=x6,故此选项错误;B.(﹣x2)2=x4,故此选项错误;C.x3•x2=x5,正确;D.x8÷x4=x4,故此选项错误.故选:C.【点睛】此题考查积的乘方运算,同底数幂的乘除运算,正确掌握相关运算法则是解题关键.二、填空题(每题4分,共24分)13、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、【分析】过D作DE⊥AB于E,DF⊥AC于F,则四边形AEDF是矩形,先证明△BDE≌△CDF(AAS),可得DE=DF,BE=CF,以此证明四边形AEDF是正方形,可得∠DAE=∠DAF=45°,AE=AF,代入AB=2,AC=可得BE、AE的长,再在Rt△ADE中利用特殊三角函数值即可求得线段AD的长.【详解】过D作DE⊥AB于E,DF⊥AC于F,则四边形AEDF是矩形,∴∠EDF=90°,∵∠BDC=90°,∴∠BDE=∠CDF,∵∠BED=∠CFD=90°,BD=DC,∴△BDE≌△CDF(AAS),∴DE=DF,BE=CF,∴四边形AEDF是正方形∴∠DAE=∠DAF=45°,∴AE=AF,∴2﹣BE=+BE,∴BE=,∴AE=,∴AD=AE=,故答案为:.【点睛】本题考查了全等三角形的综合问题,掌握矩形的性质、正方形的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.16、a>b【详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【点睛】本题考查一次函数图象上点的坐标特征.17、x≠1【解析】试题分析:分式有意义,则分母x-1≠0,由此易求x的取值范围.试题解析:当分母x-1≠0,即x≠1时,分式有意义.考点:分式有意义的条件.18、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.【详解】∵,∴a-3=0,7-b=0,解得a=3,b=7①若a=3是腰长,则底边为7,三角形的三边分别为3、3、7,∵3+3<7,∴3、3、7不能组成三角形。②若b=7是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17.∴以、为边长的等腰三角形的周长为17.【点睛】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.三、解答题(共78分)19、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;【分析】(1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;【详解】(1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;【点睛】本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.20、1.【分析】先由全等三角形的性质得到AF=AE=4,继而根据DF=AD-AF进行求解即可.【详解】∵△ACF≌△ADE,∴AF=AE,∵AE=5,∴AF=5,∵DF=AD-AF,AD=12,∴DF=12-5=1.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的对应边相等是解题的关键.21、(1)见解析;(2)见解析【分析】(1)根据垂直的定义,结合网格图形即可得到结论;(2)根据线段垂直平分线的性质,结合网格图形即可得到结论.【详解】解:(1)根据垂直的定义,结合网格图形找到点C,连接BC得到所求角,如图所示:∠ABC即为所求;(2)根据线段垂直平分线的性质,结合网格图形,作出点E、F,连接EF,如图所示:直线EF即为所求.【点睛】本题考查了网格图形中作垂线和垂直平分线的图形的应用,掌握垂直的定义和垂直平分线的性质是解题的关键.22、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.23、(1)见解析;(2)见解析;(3)740人【分析】(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;

(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;

(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.【详解】解:(1)抽取的学生总数为20÷0.05=400,

则60.5~70.5的频率为48÷400=0.12,

70.5~80.5的频数为400×0.2=80,

90.5~100.5的频率为148÷400=0.37,

补全频数分布表如下:分组频数频率50.5~60.5200.0560.5~70.5480.1270.5~80.5800.2080.5~90.51040.2690.5~100.51480.37合计4001(2)由(1)中数据补全频数分布直方图如下:

(3)2000×0.37=740(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论