北京市第一零一中学2025届数学八上期末学业水平测试试题含解析_第1页
北京市第一零一中学2025届数学八上期末学业水平测试试题含解析_第2页
北京市第一零一中学2025届数学八上期末学业水平测试试题含解析_第3页
北京市第一零一中学2025届数学八上期末学业水平测试试题含解析_第4页
北京市第一零一中学2025届数学八上期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第一零一中学2025届数学八上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知点和点是一次函数图像上的两点,则a与b的大小关系是()A. B. C. D.以上都不对2.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形3.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.164.下列四个图形中,不是轴对称图形的是()A. B. C. D.5.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB//CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.在△ABC中,若∠A=80°,∠B=30°,则∠C的度数是()A.70° B.60° C.80° D.50°7.关于一次函数,下列结论正确的是()A.图象过点(3,-1) B.图象不经过第四象限C.y随x的增大而增大 D.函数图象与两坐标轴所围成的三角形面积是68.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)9.下列说法正确的是()A.代数式是分式 B.分式中,都扩大3倍,分式的值不变C.分式有意义 D.分式是最简分式10.禽流感病毒的形状一般为球形,直径大约为0.000000102米,数0.000000102用科学记数法表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.12.已知4y2+my+1是完全平方式,则常数m的值是______.13.若a﹣b=1,ab=2,那么a+b的值为_____.14.已知关于的方程的解是正数,则的取值范围为__________.15.满足的整数的值__________.16.如图,△ABC≌△A′B′C′,其中∠A=46°,∠B′=27°,则∠C=_____°.17.使分式x2-1x+1的值为0,这时18.若与的值相等,则_______.三、解答题(共66分)19.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?20.(6分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.模型应用:(1)如图1,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l1.求l1的函数表达式.(1)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,1a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.21.(6分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.22.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?23.(8分)已知:线段,以为公共边,在两侧分别作和,并使.点在射线上.(1)如图l,若,求证:;(2)如图2,若,请探究与的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,若,过点作交射线于点,当时,求的度数.24.(8分)如图与x轴相交于点A,与y轴交于点B,求A、B两点的坐标;点为x轴上一个动点,过点C作x轴的垂线,交直线于点D,若线段,求a的值.25.(10分)如图,在平面直角坐标系中,直线AB交x轴于点B(6,0),交y轴于点C(0,6),直线AB与直线OA:y=x相交于点A,动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.26.(10分)如图,,点在上.(1)求证:平分;(2)求证:.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵5>3,∴a<b.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.2、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.3、C【详解】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以都是等边三角形.所以所以六边形的周长为3+1+4+2+2+3=15;故选C.4、D【解析】根据轴对称图形的定义进行判断即可.【详解】A、B、C选项的图形都是轴对称图形;D选项的图形不是轴对称图形.故选:D.【点睛】本题考查轴对称图形的定义,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.5、C【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【详解】∵l是四边形ABCD的对称轴,

∴∠CAD=∠BAC,∠ACD=∠ACB,

∵AD∥BC,

∴∠CAD=∠ACB,

∴∠CAD=∠ACB=∠BAC=∠ACD,

∴AB∥CD,AB=BC,故①②正确;

又∵l是四边形ABCD的对称轴,

∴AB=AD,BC=CD,

∴AB=BC=CD=AD,

∴四边形ABCD是菱形,

∴AO=OC,故④正确,

∵菱形ABCD不一定是正方形,

∴AB⊥BC不成立,故③错误,

综上所述,正确的结论有①②④共3个.

故选:C.6、A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A=80°,∠B=30°,∴,故选:A.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°.7、D【分析】根据一次函数的性质,依次分析各个选项,选出正确的选项即可.【详解】解:A、令,则,则图像过点(3,1);故A错误;B、由,则一次函数经过第二、四象限,故B错误;C、由,则y随x的增大而减小;故C错误;D、令,则,令,则,则面积为:;故D正确;故选:D.【点睛】本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.8、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.9、D【解析】根据分式的定义及性质依次判断即可求解.【详解】A.代数式是整式,故错误;B.分式中,都扩大3倍后为,分式的值扩大3倍,故错误;C.当x=±1时,分式无意义,故错误;D.分式是最简分式,正确,故选D.【点睛】此题主要考查分式的定义及性质,解题的关键是熟知分式的特点与性质.10、C【分析】本题考查用科学记数法表示绝对值小于1的数,一般形式为,其中,由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:,故选:.【点睛】科学计数法一般形式为,其中.绝对值大于10时,n为正整数,绝对值小于1时,n为负整数.二、填空题(每小题3分,共24分)11、1【分析】先根据勾股定理求出OC的长度,然后再利用勾股定理求出OD的长度,最后利用CD=OC-OD即可得出答案.【详解】解:如图由题意可得:AC=BD=25m,AO=7m,AB=8m,CD即为所求则OC==21(m),当云梯的底端向左滑了8米,则OB=7+8=15(m),故OD==20(m),则CD=OC-OD=21-20=1m.故答案为:1.【点睛】本题主要考查勾股定理的应用,掌握勾股定理是解题的关键.12、1或-1【解析】∵1y2-my+1是完全平方式,∴-m=±1,即m=±1.故答案为1或-1.13、±1.【分析】把a-b=1两边平方,利用完全平方公式化简,整理求出a2+b2的值,原式平方后利用完全平方公式化简,开方即可求出值.【详解】把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=9,则a+b=±1,故答案为:±1【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14、且【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【详解】解关于x的方程得x=m+6,∵x−2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>−6且m≠−1.故答案为:m>−6且m≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.15、3【分析】根据与的取值范围确定整数x的范围.【详解】∵2<<3,3<<4,∴x是大于2小于3的整数,故答案为:3.【点睛】此题考查二次根式的大小,正确确定与的大小是解题的关键.16、107【解析】根据全等三角形的性质求出∠B的度数,根据三角形内角和定理计算即可.【详解】∵△ABC≌△A′B′C′,

∴∠B=∠B′=27°,

∴∠C=180°-∠A-∠B=107°,

故答案为:107°.【点睛】本题考查的知识点是全等三角形的性质,解题关键是掌握全等三角形的对应边相等、全等三角形的对应角相等.17、1【解析】试题分析:根据题意可知这是分式方程,x2答案为1.考点:分式方程的解法18、-7【分析】由值相等得到分式方程,解方程即可.【详解】由题意得:,2x-4=3x+3,x=-7,经检验:x=-7是原方程的解,故答案为:-7.【点睛】此题考查列分式方程及解方程,去分母求出一次方程的解后检验,根据解分式方程的步骤解方程.三、解答题(共66分)19、(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只;

(2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x只,乙种节能灯进了y只,依题意得:,解得:,答:甲、乙两种节能灯各进80只,40只;

(2)由题意可得,

该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),

答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.20、实践操作:详见解析;模型应用:(1)y=x+2;(1)A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或2.【分析】操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;(1)分两种情况讨论:①当Q在直线AP的下方时,②当Q在直线AP的上方时.根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.【详解】操作:如图1:∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∵,∴△CAD≌△BCE(AAS);(1)∵直线yx+2与y轴交于点A,与x轴交于点B,∴A(0,2)、B(﹣3,0).如图1:过点B做BC⊥AB交直线l1于点C,过点C作CD⊥x轴.在△BDC和△AOB中,∵,∴△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=2.OD=OB+BD=3+2=7,∴C点坐标为(﹣7,3).设l1的解析式为y=kx+b,将A,C点坐标代入,得:,解得:,l1的函数表达式为yx+2;(1)由题意可知,点Q是直线y=1x﹣6上一点.分两种情况讨论:①当Q在直线AP的下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(1a﹣6)=8﹣a,解得:a=2.②当Q在直线AP的上方时,如图2,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=1a﹣11,FQ=8﹣a.在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即1a﹣11=8﹣a,解得:a.综上所述:A.P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或2.【点睛】本题考查了一次函数综合题,利用余角的性质得出∠ACD=∠CBE是解题的关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD,BD的长是解题的关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a的方程是解题的关键,要分类讨论,以防遗漏.21、详见解析【解析】先根据,得出,故,可得,再由可知即可得到.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D,∴DF∥AC,∴∠A=∠F.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.22、A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【分析】设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,列方程进行求解即可.【详解】设B型机器人每小时搬运kg化工原料,则A型机器人每小时搬运kg化工原料,由题意得,,解此分式方程得:,经检验是分式方程的解,且符合题意,当时,,答:A型机器人每小时搬运kg化工原料,B型机器人每小时搬运kg化工原料.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.23、(1)见详解;(2)+2=90°,理由见详解;(3)99°.【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE与BD交点为G,由三角形外角的性质得∠CGB=∠D+∠DAE,由,得∠CGB+∠C=90°,结合,即可得到结论;(3)设∠DAE=x,则∠DFE=8x,由,+2=90°,得关于x的方程,求出x的值,进而求出∠C,∠ADB的度数,结合∠BAD=∠BAC,即可求解.【详解】(1)∵,∴∠C+∠CBD=180°,∵,∴∠D+∠CBD=180°,∴;(2)+2=90°,理由如下:设CE与BD交点为G,∵∠CGB是∆ADG的外角,∴∠CGB=∠D+∠DAE,∵,∴∠CBD=90°,∴在∆BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵,∴+2=90°;(3)设∠DAE=x,则∠DFE=8x,∴∠AFD=180°-8x,∵,∴∠C=∠AFD=180°-8x,又∵+2=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB,又∵∠BAD=∠BAC,∴∠ABC=∠ABD=∠CBD=45°,∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.24、(1)A,B;(2)1或.【分析】(1)由函数解析式y=2x+3,令y=0求得A点坐标,x=0求得B点坐标;(2)可知D的横坐标为a,则纵坐标为2a+3,由CD=5得出|2a+3|=5,从而求出a.【详解】解:由题得:当时,,点的坐标为,当时,,点的坐标为;由题得,点D的横坐标为:a,则纵坐标为,解得:,,的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论