版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年贵州省铜仁地区松桃县九年级数学第一学期开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣72、(4分)、、为三边,下列条件不能判断它是直角三角形的是()A. B.,,C. D.,,(为正整数)3、(4分)如图,在中,,,,延长到点,使,交于点,在上取一点,使,连接.有以下结论:①平分;②;③是等边三角形;④,则正确的结论有()A.1个 B.2个 C.3个 D.4个4、(4分)设、是方程的两根,则+=()A.-3 B.-1 C.1 D.35、(4分)若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm6、(4分)不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行 B.一组对边平行,另一组对边相等C.一组对边平行且相等 D.两组对边分别相等7、(4分)今年我市有近2万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本 B.近2万名考生是总体C.每位考生的数学成绩是个体 D.1000名学生是样本容量8、(4分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC②四边形BEFG是平行四边形③EG=GF④EA平分∠GEF其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一元二次方程x2-4x-3=0的两根为m,n,则-mn+=.10、(4分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.11、(4分)一次函数的图象如图所示,当时,的取值范围是_______.12、(4分)一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.13、(4分)已知菱形ABCD的对角线长度是8和6,则菱形的面积为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.15、(8分)如图,在矩形中,,分别在,上.(1)若,.①如图1,求证:;②如图2,点为延长线上一点,的延长线交于,若,求证:;(2)如图3,若为的中点,.则的值为(结果用含的式子表示)16、(8分)如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?17、(10分)□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.(1)当t=2时,证明以A、P、C、Q为顶点的四边形是平行四边形.(2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.(3)设PQ=y,直接写出y与t的函数关系式.18、(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.20、(4分)一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)21、(4分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.若△BCD是等腰三角形,则四边形BDFC的面积为_______________。
22、(4分)若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.23、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.二、解答题(本大题共3个小题,共30分)24、(8分)先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.25、(10分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,请判断△ABC的形状;(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.26、(12分)先化简,再求值:﹣2(x﹣1),其中x=.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.本题主要考查函数值,解题的关键是掌握函数值的计算方法.2、C【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.【详解】解:A.即,根据勾股定理逆定理可判断△ABC为直角三角形;B.,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;C.根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;D.,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;故选:C本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.3、D【解析】
先根据等腰直角三角形的性质及已知条件得出∠DAB=∠DBA=30°,则AD=BD,再证明CD是边AB的垂直平分线,得出∠ACD=∠BCD=45°,然后根据三角形外角的性质求出∠CDE=∠BDE=60°即可判断①②;利用差可求得结论:∠CDE=∠BCE-∠ACB=60°,即可判断③;证明△DCG是等边三角形,再证明△ACD≌△ECG,利用线段的和与等量代换即可判断④.【详解】解:∵△ABC是等腰直角三角形,∠ACB=90°,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∴∠CDE=∠CAD+∠ACD=15°+45°=60°,
∵∠BDE=∠DBA+∠BAD=60°;
∴∠CDE=∠BDE,
即DE平分∠BDC;
所以①②正确;
∵CA=CB,CB=CE,
∴CA=CE,
∵∠CAD=∠CBD=15°,
∴∠BCE=180°-15°-15°=150°,
∵∠ACB=90°,
∴∠ACE=150°-90°=60°,
∴△ACE是等边三角形;
所以③正确;∵,∠EDC=60°,
∴△DCG是等边三角形,
∴DC=DG=CG,∠DCG=60°,
∴∠GCE=150°-60°-45°=45°,
∴∠ACD=∠GCE=45°,
∵AC=CE,
∴△ACD≌△ECG,
∴EG=AD,
∴DE=EG+DG=AD+DC,
所以④正确;
正确的结论有:①②③④;
故选:D.本题考查了等腰三角形、全等三角形的性质和判定、等腰直角三角形、等边三角形等特殊三角形的性质和判定,熟练掌握有一个角是60°的等腰三角形是等边三角形这一判定等边三角形的方法,在几何证明中经常运用.4、B【解析】
根据一元二次方程根与系数的关系解答即可.【详解】解:∵、是方程的两根,∴+=-1.故选:B本题考查了一元二次方程根与系数的关系,若是一元二次方程的两个根,则.5、D【解析】
根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【详解】解:∵D、E分别为AB、BC的中点,
∴DE=AC=5,
同理,DF=BC=8,FE=AB=4,
∴△DEF的周长=4+5+8=17(cm),
故选D.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.6、B【解析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.7、C【解析】试题分析:1000名考生的数学成绩是总体的一个样本;近8万多名考生的数学成绩是总体;每位考生的数学成绩是个体;1000是样本容量.考点:(1)、总体;(2)、样本;(3)、个体;(4)、样本容量.8、B【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG,∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】试题分析:由m与n为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即﹣mn+=﹣3mn=16+9=1.故答案为1.考点:根与系数的关系.10、2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=-=2.故答案为2.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.11、【解析】
根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.【详解】当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),∴x≤2,故答案为:x≤2.本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.12、.【解析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.【详解】解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,∴与两坐标轴围成的三角形的面积S=,∴k=,∵一次函数y=kx﹣2的图象经过第一、三、四象限,∴k>0,∴k=,故答案为:.本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.13、1【解析】
根据菱形的面积等于两条对角线乘积的一半即可求解.【详解】∵菱形的对角线长的长度分别为6、8,∴菱形ABCD的面积S=BD•AC=×6×8=1.故答案为:1.本题考查了菱形的性质,熟知菱形的面积等于两条对角线乘积的一半是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、证明见解析.【解析】
利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【详解】∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.15、(1)①见解析;②见解析;(2)【解析】
(1)①由“ASA”可证△ADE≌△BAF可得AE=BF;②过点A作AF⊥HD交BC于点F,由等腰三角形的性质和平行线的性质可得∠HAF=∠AFG=∠DAF,可得AG=FG,即可得结论;(2)过点E作EH⊥DF于H,连接EF,由角平分线的性质可得AE=EH=BE,由“HL”可证Rt△BEF≌Rt△HEF,可得BF=FH,由勾股定理可求解.【详解】证明(1)①∵四边形ABCD是矩形,AD=AB,∴四边形ABCD是正方形,∴AD=AB,∠DAB=90°=∠ABC,∴∠DAF+∠BAF=90°,∵AF⊥DE,∴∠DAF+∠ADE=90°,∴∠ADE=∠BAF,且AD=AB,∠DAE=∠ABF=90°,∴△ADE≌△BAF(ASA),∴AE=BF;②如图,过点A作AF⊥HD交BC于点F,由(1)可知AE=BF,∵AH=AD,AF⊥HD,∴∠HAF=∠DAF.∵AD∥BC,∴∠DAF=∠AFG,∴∠HAF=∠AFG,∴AG=GF,∴AG=GB+BF=GB+AE;(3)如图,过点E作EH⊥DF于H,连接EF,∵E为AB的中点,∴AE=BE=AB,∵∠ADE=∠EDF,EA⊥AD,EH⊥DF,∴AE=EH,AD=DH=nAB,∴BE=EH,EF=EF,∴Rt△BEF≌Rt△HEF(HL),∴BF=FH,设BF=x=FH,则FC=BC-BF=nAB-x,∵DF2=FC2+CD2,∴(nAB+x)2=(nAB-x)2+AB2,∴x==BF,∴FC=AB,∴=4n2-1.本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.16、2400元【解析】试题分析:连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.试题解析:连结AC,在Rt△ACD中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=(米),∵AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,该区域面积S=S△ACB﹣S△ADC=×5×12﹣×3×4=24(平方米),即铺满这块空地共需花费=24×100=2400元.考点:1.勾股定理;2.勾股定理的逆定理.17、(1)见解析;(2)t=2或t=8;(3)y=-2t+10(0≤t≤5时),y=2y-10(t>5时).【解析】分析:(1)只需要证明四边形APCQ的对角线互相平分即可证明其为平行四边形.(2)根据矩形的性质可知四边形APCQ的对角线相等,然后分两种情况即可解答.(3)根据(2)中的图形,分两种情况进行讨论即可.详解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=5,当t=2时,BP=QD=2,∴OP=OQ=3,∴四边形APCQ是平行四边形;(2)t=2或t=8;理由如下:图一:图二:∵四边形APCQ是矩形,∴PQ=AC=6,则BQ=PD=2,第一个图中,BP=6+2=8,则此时t=8;第二个图中,BP=2,则此时t=2.即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;(3)根据(2)中的两个图形可得出:y=-2t+10(时),y=2y-10(时).点睛:本题主要考查了矩形的性质和平行四边形的判定,结合题意画出图形是解答本题的关键.18、(1)100+200x;(2)1.【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;(2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.一、填空题(本大题共5个小题,每小题4分,共20分)19、OB=OD.(答案不唯一)【解析】
AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,即得结论.【详解】解:∵OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,∴△ABO≌△CDO(SAS).故答案为:OB=OD.(答案不唯一)本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20、红色【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可【详解】解:总共有3+2+1=6个球,摸到红球的概率为:,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.21、5或1.【解析】
先证明四边形BDFC是平行四边形;当△BCD是等腰三角形求面积时,需分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=5,然后求出DG=3,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾.【详解】证明:∵∠A=∠ABC=90°,
∴BC∥AD,
∴∠CBE=∠DFE,
在△BEC与△FED中,∴△BEC≌△FED,
∴BE=FE,
又∵E是边CD的中点,
∴CE=DE,
∴四边形BDFC是平行四边形;(1)BC=BD=5时,由勾股定理得,AB===,
所以,四边形BDFC的面积=5×=5;
(2)BC=CD=5时,过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=5,
所以,DG=AG-AD=5-2=3,由勾股定理得,CG===4,
所以,四边形BDFC的面积=4×5=1;
(3)BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=4,矛盾,此时不成立;
综上所述,四边形BDFC的面积是5或1.故答案为:5或1.本题考查平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22、2.4或【解析】
分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【详解】若直角三角形的两直角边为3、4,则斜边长为,设直角三角形斜边上的高为h,,∴.若直角三角形一条直角边为3,斜边为4,则另一条直角边为设直角三角形斜边上的高为h,,∴.故答案为:2.4或.本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.23、1【解析】
根据题意可以画出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.【详解】如图所示,当BA=BP1时,△ABP1是等腰三角形,当BA=BP2时,△ABP2是等腰三角形,当AB=AP3时,△ABP3是等腰三角形,当AB=AP4时,△ABP4是等腰三角形,当BA=BP5时,△ABP5是等腰三角形,当P1A=P1B时,△ABP1是等腰三角形,故答案为1.本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.二、解答题(本大题共3个小题,共30分)24、(1);(2),证明见解析.【解析】
(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n”,再利用开方即可证出结论成立.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级数学上册教案-第11课时 0的减法 人教新课标
- 二年级下册数学学案-3.2《平移》|人教新课标
- 二年级下册数学导学案:克和千克 第3课时 练习二十
- 一年级下册数学教案-6.5 两位数减一位数、整十数(退位)-人教新课标
- 一年级下册数学教案-2.3《十几减5、4、3、2》 人教版
- 2023-2024学年六年级下学期数学自行车里的数学 导学案
- 2024-2025学年沪粤版八年级下册第十章10.3解剖原子导学案
- 三年级数学下册 教案 简单分数的大小比较 北京版
- 中班语言诗歌教案及教学反思《吹泡泡》
- 二年级上册数学教案-第六单元 第6课时 9的乘法口诀|人教新课标
- 蛔虫和环毛蚓比较解剖ppt课件
- 初中数学教师教学情况调查问卷
- (完整word版)拼音练习jqx和ü、üe的相拼
- 新材料界定与分类
- 医疗质量检查分析、总结、反馈5篇
- (完整版)六年级下册体育教学计划与教案
- 高中小说阅读教学策略
- 幼儿园教育和家庭教育的有效结合研究
- 集团公司两金管理评价办法
- 【全面解读《国有建设用地使用权出让地价评估技术规范【2018】4号文》
- 相控阵检测工艺规程
评论
0/150
提交评论